\qquad Given name \qquad

Signature \qquad Neptun Code \qquad
No calculators or electronic devices are allowed. One formula sheet with 15 formulas is OK.

1. (7 points) Let X_{n} denote the position of a one-dimensional simple symmetric random walker at time n. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(X_{n}\right)$.
(a) Given $a_{k} \in \mathbb{R}_{+}, k \in \mathbb{N}$, how to choose $b_{k} \in \mathbb{R}_{+}, k \in \mathbb{N}$ if we want $\left(M_{n}\right)$ to be a martingale, where

$$
M_{n}=\prod_{k=1}^{n} \frac{\left(a_{k}\right)^{X_{k}-X_{k-1}}}{b_{k}}, \quad n=0,1,2, \ldots
$$

(b) Write $M_{n}-1$ as the discrete stochastic integral $(H \cdot X)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(X_{n}\right)$. Write the formula for H_{n} in a way that shows that $\left(H_{n}\right)$ is indeed predictable.
2. (8 points) Let $0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=t$. Let

$$
L_{n}=\sum_{k=1}^{n} e^{B\left(t_{k-1}\right)} \cdot\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right), \quad \mathcal{I}=\int_{0}^{t} e^{B_{s}} \mathrm{~d} B_{s} .
$$

Show that

$$
\mathbb{E}\left(\left(\mathcal{I}-L_{n}\right)^{2}\right)=\sum_{k=1}^{n} e^{2 t_{k-1}} \cdot\left[\frac{1}{2}\left(e^{2\left(t_{k}-t_{k-1}\right)}-1\right)-4\left(e^{\frac{1}{2}\left(t_{k}-t_{k-1}\right)}-1\right)+\left(t_{k}-t_{k-1}\right)\right] .
$$

Help: If $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then the moment generating function of X is $M(\lambda)=e^{\frac{1}{2} \lambda^{2} \sigma^{2}}$.

