Midterm Exam - April 10, 2025, Stochastic Analysis

 Family name
 Given name

 Signature
 Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is OK.

1. Let (B_t) denote a standard Brownian motion and let (\mathcal{F}_t) denote its natural filtration. Let

$$Z_t = 1 + \int_0^t \frac{1}{\sqrt{1+s}} \,\mathrm{d}B_s.$$

- (a) (2 points) Calculate the probability of the event that the process (Z_t) exits the interval [0,3] at its left endpoint (rather than at its right endpoint). Instruction: you may assume without proof that (Z_t) almost surely does exit this interval.
- (b) (3 points) Find a function $\alpha : \mathbb{R}_+ \to \mathbb{R}$ with $\alpha(0) = 0$ such that (M_t) is a martingale where $M_t := Z_t^2 \alpha(t)$. Instruction: Please present a proof that does not use Itô's formula.
- (c) (3 points) Let τ denote the time that it takes for (Z_t) to exit the interval [0,3]. Calculate the expected value of $\alpha(\tau)$.

Instruction: you can use the optional stopping theorem without checking its conditions.

2. Let (B_t) denote a standard Brownian motion. Let

$$U := \int_0^2 B_t^3 \, \mathrm{d}B_t, \qquad V := \int_0^3 B_t \, \mathrm{d}B_t, \qquad Z := \int_0^1 e^{B_t} \, \mathrm{d}B_t.$$

- (a) (2 points) Calculate the variance of U.
- (b) (2 points) Calculate the covariance of Z and B_3 .
- (c) (3 points) Calculate the covariance of V and Z.

Hint: If $X \sim \mathcal{N}(0, \sigma^2)$ and n = 2k then $\mathbb{E}[X^{2k}] = \frac{\sigma^{2k} \cdot (2k)!}{2^k k!}$ and $\mathbb{E}[e^{\lambda X}] = e^{\frac{1}{2}\lambda^2 \sigma^2}$.