
First Midterm Exam - May 28, 2025, Stochastic Analysis

Let’s tackle these two stochastic analysis problems.
Exercise 1: Rescaling an Itô Integral to be a Brownian Motion
Let (Bt) denote standard Brownian motion. Let Xt =

∫ t

0
e3s dBs. Let f : R+ → R+ denote

a monotone increasing continuous deterministic function satisfying f(0) = 0. We want to
choose f such that the continuous-time process (Xf(t))t≥0 has the same law as (Bt).

**Hint:** Use the equivalent characterization of Brownian motion as a Gaussian process
with a given autocovariance structure.

A standard Brownian motion (Bt) is a Gaussian process with E[Bt] = 0 for all t, and its
autocovariance function is E[BsBt] = min(s, t).

First, let’s analyze the process Xt. Xt is an Itô integral. It is a continuous martingale with
X0 = 0. The quadratic variation of Xt is given by: ⟨X⟩t =

∫ t

0
(e3s)2 ds =

∫ t

0
e6s ds. Since Xt is

a continuous martingale starting at 0, and its quadratic variation is deterministic, by Lévy’s
characterization of Brownian motion, Xt is a time-changed Brownian motion. Specifically,
Xt = B′

⟨X⟩t for some standard Brownian motion B′. Let Yt = Xf(t). We want Yt to be
a standard Brownian motion. This means Yt must be a Gaussian process, E[Yt] = 0, and
E[YsYt] = min(s, t).

Let’s check the mean of Xt: E[Xt] = E
[∫ t

0
e3s dBs

]
= 0 for all t. Therefore, E[Xf(t)] = 0

for all t. This condition is satisfied.
Now let’s compute the autocovariance of Xt: For s ≤ t, E[XsXt] = E

[(∫ s

0
e3u dBu

) (∫ t

0
e3v dBv

)]
.

Using the Itô isometry for two Itô integrals, if Xt =
∫ t

0
HudBu and Yt =

∫ t

0
GudBu, then

E[XtYt] = E[
∫ t

0
HuGudu]. Here, we have Xs and Xt. We can rewrite Xt = Xs +

∫ t

s
e3vdBv.

E[XsXt] = E
[
Xs

(
Xs +

∫ t

s
e3v dBv

)]
= E[X2

s ]+E
[
Xs

∫ t

s
e3v dBv

]
. Since Xs is Fs-measurable

and
∫ t

s
e3v dBv is a martingale increment independent of Fs (because Bv − Bs for v > s is in-

dependent of Fs), the second term is E[Xs]E[
∫ t

s
e3v dBv] = 0 · 0 = 0. So, E[XsXt] = E[X2

s ] for

s ≤ t. By Itô isometry, E[X2
s ] = E

[(∫ s

0
e3u dBu

)2]
=

∫ s

0
(e3u)2 du =

∫ s

0
e6u du.

Therefore, for s, t ≥ 0, E[XsXt] =
∫ min(s,t)

0
e6u du.

Now consider the process Yt = Xf(t). We want Yt to have the same law as Bt. This means its
autocovariance must be E[YsYt] = min(s, t). E[YsYt] = E[Xf(s)Xf(t)]. Let s′ = f(s) and t′ =

f(t). E[Xs′Xt′ ] =
∫ min(s′,t′)

0
e6u du. Substituting back s′ and t′: E[YsYt] =

∫ min(f(s),f(t))

0
e6u du.

We require this to be equal to min(s, t). So,
∫ min(f(s),f(t))

0
e6u du = min(s, t).

Let’s evaluate the integral:
∫ x

0
e6u du =

[
1
6
e6u

]x
0
= 1

6
(e6x − e0) = 1

6
(e6x − 1).

So, we need 1
6
(e6min(f(s),f(t))−1) = min(s, t). Since f is monotone increasing, min(f(s), f(t)) =

f(min(s, t)). Let u = min(s, t). Then we need: 1
6
(e6f(u) − 1) = u.

Now we need to solve for f(u): e6f(u) − 1 = 6u e6f(u) = 6u + 1 6f(u) = ln(6u + 1)
f(u) = 1

6
ln(6u+ 1).

Therefore, the function f(t) = 1
6
ln(6t+ 1) is the required choice.

Exercise 2: Brownian Motion with Upward Drift and Hitting Times
Let (Bt) denote the standard Brownian motion. Let 0 ≤ µ < +∞. Let Xt := Bt + µt. We

call (Xt) the Brownian motion with upward drift µ. Let τ = min{ t : Xt = x } denote the
hitting time of level x ∈ R+. You may assume without proof that P(τ < +∞) = 1.

Part (a): For any α ∈ R find a constant β ∈ R such that (Mt) is a martingale, where
Mt := exp (αXt − βt).
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**Hint:** exp
(
λBt − λ2

2
t
)

is a martingale for any choice of λ ∈ R.
Let Mt = exp(αXt − βt). Substitute Xt = Bt + µt: Mt = exp(α(Bt + µt) − βt) Mt =

exp(αBt + αµt− βt) Mt = exp(αBt + (αµ− β)t).
For Mt to be a martingale, comparing it to the given hint form exp

(
λBt − λ2

2
t
)
, we need:

The coefficient of Bt is α, so λ = α. The coefficient of t must be −λ2

2
, which is −α2

2
. So we

need (αµ− β) = −α2

2
.

Now we can solve for β: β = αµ+ α2

2
.

Thus Mt = exp
(
αXt −

(
αµ+ α2

2

)
t
)

is a martingale.

Part (b): Apply the optional stopping theorem to calculate E
(
e−λτ

)
for any λ ∈ R+.

We want to calculate E(e−λτ ). Let’s choose α and β in part (a) such that Mt is related
to e−λt. From part (a), Mt = exp

(
αXt −

(
αµ+ α2

2

)
t
)
. We want the coefficient of t in the

exponent to be −λ. So, we need −
(
αµ+ α2

2

)
= −λ. αµ+ α2

2
= λ. 1

2
α2 + µα− λ = 0.

This is a quadratic equation in α. We can solve for α using the quadratic formula: α =
−µ±

√
µ2−4( 1

2
)(−λ)

2( 1
2
)

α =
−µ±

√
µ2+2λ

1
α = −µ±

√
µ2 + 2λ.

Since λ > 0, µ2 + 2λ > µ2, so
√
µ2 + 2λ > µ. This means one root for α is positive

(−µ+
√

µ2 + 2λ), and the other is negative (−µ−
√
µ2 + 2λ).

Let’s define Mt = exp(αXt − λt) where α is one of the roots. Since τ is a hitting time,
Xτ = x (assuming X0 = 0, which is the usual start for Brownian motion and its drift, but
the question doesn’t specify X0. If X0 = 0, then Xτ = x. If X0 = x0, then Xτ = x.
Let’s assume X0 = 0 for now, then τ is the first time Xt reaches x, starting from 0). Then
Mτ = exp(αx− λτ).

We are given the condition for Optional Stopping Theorem: if (Mt) is a martingale, τ is
a stopping time satisfying P(τ < +∞) = 1 and if there exists a constant C ∈ R+ such that
P(|Mt∧τ | ≤ C) = 1 for any t ≥ 0 then we have E(Mτ ) = E(M0).

Let’s assume X0 = 0. Then M0 = exp(α · 0− λ · 0) = e0 = 1. So, E(Mτ ) = 1. E[exp(αx−
λτ)] = 1. E[eαxe−λτ ] = 1. eαxE[e−λτ ] = 1. E[e−λτ ] = e−αx.

Now we need to choose the correct root for α. Since Xt has an upward drift (µ ≥ 0), to hit
a positive level x, Xt will tend to increase. Consider the case where α < 0. As t → ∞, if Xt

does not hit x (which it does with probability 1), then Xt → ∞. Mt = exp(αXt − λt) would
tend to 0 if αXt → −∞. Let α = −µ−

√
µ2 + 2λ. This value of α is negative. As Xt → ∞,

eαXt → 0. Also e−λt → 0. The problem with using this α in the optional stopping theorem is
the boundedness condition. For the martingale Mt = exp(αBt − λt), for α < 0, as Bt → ∞,
Mt → 0. As Bt → −∞, Mt → ∞. So Mt is not bounded.

However, we are hitting a level x > 0. When τ is the hitting time of x, Xτ = x. The
process Mt∧τ is eαXt∧τ−λ(t∧τ). For t < τ , 0 ≤ Xt∧τ < x (if x > 0 and X0 = 0). For t ≥ τ ,
Xt∧τ = x. So, 0 ≤ Xt∧τ ≤ x. This means αXt∧τ is bounded by αx (if α > 0) or 0 (if α < 0).
Let’s consider α1 = −µ+

√
µ2 + 2λ and α2 = −µ−

√
µ2 + 2λ.

If we use α1 = −µ+
√
µ2 + 2λ: Since µ ≥ 0 and λ > 0,

√
µ2 + 2λ >

√
µ2 = |µ|. If µ = 0,

α1 =
√
2λ. If µ > 0, α1 is positive. So α1 > 0. In this case, eα1Xt∧τ ≤ eα1x for X0 = 0, x > 0.

And e−λ(t∧τ) ≤ 1. So Mt∧τ is bounded by eα1x. Thus the optional stopping theorem applies
for α1.

So, using α = −µ+
√

µ2 + 2λ: E[e−λτ ] = e−αx = e−x(−µ+
√

µ2+2λ). E[e−λτ ] = exp
(
x(µ−

√
µ2 + 2λ)

)
.

This is the standard result for the Laplace transform of the hitting time of a Brownian
motion with drift.
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