First Midterm Exam - May 28, 2025, Stochastic Analysis

Let’s tackle these two stochastic analysis problems.

Exercise 1: Rescaling an 1t6 Integral to be a Brownian Motion

Let (B;) denote standard Brownian motion. Let X, = [ 3 dB,. Let f : R, — R, denote
a monotone increasing continuous deterministic function satlsfymg f(0) = 0. We want to
choose f such that the continuous-time process (Xyq))e>0 has the same law as (By).

**Hint:** Use the equivalent characterization of Brownian motion as a Gaussian process
with a given autocovariance structure.

A standard Brownian motion (B;) is a Gaussian process with E[B;] = 0 for all ¢, and its
autocovariance function is E[B;B,;] = min(s, ).

First, let’s analyze the process X;. X, is an [t integral. It is a continuous martingale with
Xy = 0. The quadratic variation of X, is given by: (X), = [1(e*)>ds = [ e ds. Since X, is
a continuous martingale starting at 0, and its quadratic variation is deterministic, by Lévy’s
characterization of Brownian motion, X; is a time-changed Brownian motion. Specifically,
X, = ng>t for some standard Brownian motion B’. Let Y, = Xj;y. We want Y; to be
a standard Brownian motion. This means Y; must be a Gaussian process, E[Y;] = 0, and
E[YY,] = min(s, t).

Let’s check the mean of X;: E[X;| = FE [ Ote?’s dBS] = 0 for all . Therefore, E[X 4] = 0

for all £. This condition is satisfied.
Now let’s compute the autocovariance of X;: For s <t, F[X;X;] = F [(fos e3t dBu) ( Ote?’” dBvﬂ .

Using the Ito isometry for two It6 integrals, if X; = f(f H,dB, and Y; = f(f G,dB,, then
E[XY;] = fo H,G,du]. Here, we have X, and X;. We can rewrite X; = X, + fst e3dB,.
EIX.X] = E [Xs <Xs +[Lew dBv)] — B[X?+E [XS [tew dBv]. Since X, is F,-measurable

and [’ e* dB, is a martingale increment independent of F, (because B, — Bj for v > s is in-
dependent of F,), the second term is E[X,|E[[’ ¢*"dB,] =0-0=0. So, E[X,X,] = E[X?] for

s < t. By Ito isometry, E[X?] = [(fos 3u dB ) ] = fo 32 dy = fo 6u du.

Therefore, for s,t > 0, E[X X;] = mm(St e du.

Now consider the process Y; = Xy We want Y; to have the same law as B;. This means its
autocovariance must be E[Y,Y;] = min(s,t). ElY.Y)| = E[X ;X)) Let s = f(s) and t' =
f(t). E[XyXy] = mm(s ) ¢6u qy. Substituting back s’ and ¢ E[Y,Y] = mm( (170) gou qy,

We require this to be equal to min(s,t). So, fmm eI ou gy = mln(s, t).

Let’s evaluate the integral: [ €5 du = [ée&‘}o = (8" — ) = £(e —1).

So, we need £ (e8mn(/(#):7(1) —1) = min(s, t). Since f is monotone increasing, min(f(s), f(t)) =
f(min(s,t)). Let u = min(s,t). Then we need: (™ —1) =w.

Now we need to solve for f(u): %™ — 1 = 6u ™ = 6u + 1 6f(u) = In(6u + 1)
f(u) = ¢ In(6u + 1).

Therefore, the function f(t) = ¢ In(6t + 1) is the required choice.

Exercise 2: Brownian Motion with Upward Drift and Hitting Times

Let (B;) denote the standard Brownian motion. Let 0 < p < +o00. Let X; := B, + ut. We
call (X;) the Brownian motion with upward drift p. Let 7 = min{¢ : X; = x } denote the
hitting time of level x € R,. You may assume without proof that P(7 < +o00) = 1.

Part (a): For any o € R find a constant 5 € R such that (M;) is a martingale, where
M, = exp (aX; — pt).



**Hint:** exp ()\Bt — )‘7215) is a martingale for any choice of A € R.

Let M; = exp(aX; — ft). Substitute X; = By + ut: My = exp(a(B; + ut) — ft) My =
exp(aBy; + aut — ft) M, = exp(aB; + (ap — p)t).

For M, to be a martingale, comparing it to the given hint form exp ()\Bt — ’\7225), we need:

)\2

The coefficient of B; is a, so A = a. The coefficient of ¢ must be —=,

2

need (ap — ) = —%.

Now we can solve for 8: = au+ 0‘72

Thus M; = exp (aXt — (@u + %2) t) is a martingale.

Part (b): Apply the optional stopping theorem to calculate E (e‘”) for any A € R,.

We want to calculate E(e=*7). Let’s choose o and 3 in part (a) such that M; is related
to e=*. From part (a), M; = exp (aXt — <Oz,u + %2> t). We want the coefficient of ¢ in the

. . 2
which is —<-. So we

exponent to be —\. So, we need — <a,u + %2> = -\ au+ 0‘72 =\ %oﬂ + pa — A= 0.
This is a quadratic equation in . We can solve for a using the quadratic formula: o =

_ a0 (— _
ui,/f(;@)( ) o = ui\/1u2+2)\ 0= —p+ 22N

Since A > 0, pu? + 2\ > p?, so v/p?+2\ > p. This means one root for « is positive
(—p + v/ p? 4+ 2X), and the other is negative (—p — /2 + 2X).

Let’s define M; = exp(aX; — At) where « is one of the roots. Since 7 is a hitting time,
X, = x (assuming X, = 0, which is the usual start for Brownian motion and its drift, but
the question doesn’t specify Xo. If Xy = 0, then X, = z. If Xy = x9, then X, = =x.
Let’s assume Xy = 0 for now, then 7 is the first time X, reaches x, starting from 0). Then
M. = exp(az — A7).

We are given the condition for Optional Stopping Theorem: if (M) is a martingale, T is
a stopping time satisfying P(7 < 4+00) = 1 and if there exists a constant C' € R, such that
P(|Mip.| < C) =1 for any t > 0 then we have E(M,) = E(M,).

Let’s assume X, = 0. Then My =exp(a-0—X-0) =€’ =1. So, E(M,) = 1. E[exp(ax —
A7) = 1. E[e®®e ] = 1. ¢E[e™] = 1. E[e™7] = e722.

Now we need to choose the correct root for . Since X; has an upward drift (¢ > 0), to hit
a positive level z, X; will tend to increase. Consider the case where a@ < 0. As t — oo, if X;
does not hit z (which it does with probability 1), then X; — oo. M; = exp(aX; — At) would
tend to 0 if aX; — —oo. Let @« = —p — v/ p? + 2\. This value of « is negative. As X; — oo,
eXt — 0. Also e — 0. The problem with using this a in the optional stopping theorem is
the boundedness condition. For the martingale M; = exp(aB; — At), for a < 0, as By — o0,
M; — 0. As By — —o0, My — oco. So M; is not bounded.

However, we are hitting a level £ > 0. When 7 is the hitting time of z, X, = x. The
process Myn, is e@Xnr=2A) - For ¢ < 7,0 < Xypr < 2 (if 2 > 0 and Xy = 0). For t > 7,
Xiar = 2. S0, 0 < Xinr < 2. This means aX;,, is bounded by az (if & > 0) or 0 (if a < 0).
Let’s consider oy = —p 4+ /p? + 2X and ay = —p — /2 + 2.

If we use a; = —p + /% + 2): Since > 0 and A > 0, \/p2 + 2\ > /2 = |u|. If p =0,
a1 = V2\. If u > 0, oy is positive. So oy > 0. In this case, e®Xivr < e for X = 0,z > 0.
And e M) < 1. So M, is bounded by e*®. Thus the optional stopping theorem applies
for o.

This is the standard result for the Laplace transform of the hitting time of a Brownian
motion with drift.



