Midterm Exam (first midterm) - December 14, 2018, Stochastic Analysis

Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad
No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and

$$
\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\mathbb{P}\left(\xi_{k}=0\right)=\frac{1}{3}, \quad k \geq 1
$$

Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$. Let

$$
X_{n}=S_{n}^{2}
$$

(a) (4 marks) Find the discrete Doob-Meyer decomposition of the process $\left(X_{n}\right)_{n \geq 1}$, i.e., write

$$
X_{n}=A_{n}+M_{n}
$$

where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Give a simple and explicit formula for A_{n}.
(b) (3 marks) Let $\tau=\min \left\{n:\left|S_{n}\right|=5\right\}$. Use the optional stopping theorem to calculate $\mathbb{E}(\tau)$. Instruction: You can use the optional stopping theorem without checking its conditions.
2. Denote by $(B(t))$ the standard Brownian motion. Let us define

$$
Y_{t}=4 B(t)-t B(4), \quad Z_{t}=(4-t) B\left(\frac{t}{1-t / 4}\right), \quad 0 \leq t<4
$$

(a) (4 marks) Show that the stochastic processes $\left(Y_{t}\right)_{0 \leq t<4}$ and $\left(Z_{t}\right)_{0 \leq t<4}$ have the same law. Hint: You can use without proof that both $\left(Y_{t}\right)_{0 \leq t<4}$ and $\left(Z_{t}\right)_{0 \leq t<4}$ are Gaussian processes.
(b) (4 marks) Find the conditional expectation of Z_{1} with respect to the sigma-algebra generated by the random variable Z_{3}.

