Make-up midterm Exam - May 10, 2023, Stochastic Analysis

Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad
No calculators or electronic devices are allowed. One formula sheet with 15 formulas is OK.

1. (8 points) Let Y_{1}, Y_{2}, \ldots denote i.i.d. random variables with distribution

$$
\begin{equation*}
\mathbb{P}\left(Y_{k}=-1\right)=\mathbb{P}\left(Y_{k}=0\right)=\mathbb{P}\left(Y_{k}=1\right)=1 / 3 . \tag{1}
\end{equation*}
$$

Let $x_{0} \in \mathbb{N}_{+}$. Let $X_{n}=x_{0}+Y_{1}+\cdots+Y_{n}$. Let $\left(\mathcal{F}_{n}\right)$ denote the natural filtration of $\left(X_{n}\right)$.
(a) Let $M_{n}=X_{n}^{3}-a \cdot n \cdot X_{n}$. How to choose $a \in \mathbb{R}$ if you want $\left(M_{n}\right)$ to be a martingale?
(b) If $x \in \mathbb{Z}$, let $T_{x}:=\min \left\{n: X_{n}=x\right\}$. Let $x_{0}<R \in \mathbb{N}$. Find $\mathbb{E}\left(T_{R} \mid T_{R}<T_{0}\right)$.

Help: Use the optional stopping theorem (OST) with an appropriately chosen stopping time. You can use the OST without checking that its conditions hold. You can also use without proof that $\mathbb{P}\left(T_{R}<T_{0}\right)=\frac{x_{0}}{R}$. You can also use that for any random variable X and any event A we have

$$
\mathbb{E}(X \mid A)=\frac{\mathbb{E}(X \mathbb{1}[A])}{\mathbb{P}(A)}
$$

2. (7 points) Let $\left(B_{t}\right)$ denote standard Brownian motion and let $\left(\mathcal{F}_{t}\right)$ denote its natural filtration. Let $X=\int_{0}^{4} B_{t} \mathrm{~d} B_{t}$. Calculate the conditional expectation of X^{2} given \mathcal{F}_{2}. Instruction: The final result should be simplified to the point that it does not contain conditional expectations or integrals.
