## Midterm Exam - April 20, 2023, Stochastic Analysis, Solutions

1. ( 7 points) Let $X_{n}$ denote the position of a one-dimensional simple symmetric random walker at time $n$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(X_{n}\right)$.
(a) Given $a_{k} \in \mathbb{R}_{+}, k \in \mathbb{N}$, how to choose $b_{k} \in \mathbb{R}_{+}, k \in \mathbb{N}$ if we want $\left(M_{n}\right)$ to be a martingale, where

$$
\begin{equation*}
M_{n}=\prod_{k=1}^{n} \frac{\left(a_{k}\right)^{X_{k}-X_{k-1}}}{b_{k}}, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

(b) Write $M_{n}-1$ as the discrete stochastic integral $(H \cdot X)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(X_{n}\right)$. Write the formula for $H_{n}$ in a way that shows that $\left(H_{n}\right)$ is indeed predictable.

## Solution:

(a) $\left(M_{n}\right)$ is clearly an adapted process. $M_{0}=1$ and $M_{n}=M_{n-1} \frac{\left(a_{n}\right)^{x_{n}-x_{n-1}}}{b_{n}}$, thus

$$
\mathbb{E}\left[M_{n} \mid \mathcal{F}_{n-1}\right] \stackrel{(\diamond)}{=} M_{n-1} \mathbb{E}\left[\left.\frac{\left(a_{n}\right)^{X_{n}-X_{n-1}}}{b_{n}} \right\rvert\, \mathcal{F}_{n-1}\right] \stackrel{(\stackrel{)}{=}}{=} M_{n-1} \mathbb{E}\left[\frac{\left(a_{n}\right)^{X_{n}-X_{n-1}}}{b_{n}}\right]=M_{n-1} \frac{\frac{1}{2} \frac{1}{a_{n}}+\frac{1}{2} a_{n}}{b_{n}}
$$

where in $(\diamond)$ we used that $M_{n-1} \in \mathcal{F}_{n-1}$ and in $(\diamond)$ we used that the random walk has independent increments. Thus $b_{k}=\frac{1}{2} \frac{1}{a_{k}}+\frac{1}{2} a_{k}$.
(b) We want to identify the random variable $H_{n}$ for which $M_{n}-M_{n-1}=H_{n} \cdot\left(X_{n}-X_{n-1}\right)$. Now

$$
\begin{array}{r}
M_{n}-M_{n-1}=M_{n-1}\left(\frac{\left(a_{n}\right)^{X_{n}-X_{n-1}}}{b_{n}}-1\right)=\frac{M_{n-1}}{b_{n}}\left(\left(a_{n}\right)^{X_{n}-X_{n-1}}-\frac{1}{2} \frac{1}{a_{n}}-\frac{1}{2} a_{n}\right) \stackrel{(* *)}{=} \\
M_{n-1} \frac{a_{n}-\frac{1}{a_{n}}}{2 b_{n}}\left(X_{n}-X_{n-1}\right)
\end{array}
$$

where ( $* *$ ) holds if $X_{n}-X_{n-1}=1$ and also if $X_{n}-X_{n-1}=-1$ (these are the two possible values of $X_{n}-X_{n-1}$ ). Thus $H_{n}=M_{n-1} \frac{a_{n}-\frac{1}{a_{n}}}{2 b_{n}}$, which is indeed $\mathcal{F}_{n-1}$-measurable since $M_{n-1} \in \mathcal{F}_{n-1}$ and $\frac{a_{n}-\frac{1}{a_{n}}}{2 b_{n}}$ is deterministic.
2. (8 points) Let $0=t_{0}<t_{1}<\cdots<t_{n-1}<t_{n}=t$. Let $L_{n}=\sum_{k=1}^{n} e^{B\left(t_{k-1}\right)} \cdot\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right)$ and $\mathcal{I}=\int_{0}^{t} e^{B_{s}} \mathrm{~d} B_{s}$. Show that

$$
\begin{equation*}
\mathbb{E}\left(\left(\mathcal{I}-L_{n}\right)^{2}\right)=\sum_{k=1}^{n} e^{2 t_{k-1}} \cdot\left[\frac{1}{2}\left(e^{2\left(t_{k}-t_{k-1}\right)}-1\right)-4\left(e^{\frac{1}{2}\left(t_{k}-t_{k-1}\right)}-1\right)+\left(t_{k}-t_{k-1}\right)\right] \tag{2}
\end{equation*}
$$

Help: If $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then the moment generating function of $X$ is $M(\lambda)=e^{\frac{1}{2} \lambda^{2} \sigma^{2}}$.
Solution: Let $X_{t}:=\sum_{k=1}^{n} e^{B\left(t_{k-1}\right)} \mathbb{1}\left[t_{k-1}<t \leq t_{k}\right]$, thus $\left(X_{t}\right)$ is a simple predictable process. We have $\mathbb{E}\left(\left(\mathcal{I}-L_{n}\right)^{2}\right)=\mathbb{E}\left[\left(\int_{0}^{t}\left(e^{B_{s}}-X_{s}\right) \mathrm{d} B_{s}\right)^{2}\right] \stackrel{(*)}{=} \mathbb{E}\left[\int_{0}^{t}\left(e^{B_{s}}-X_{s}\right)^{2} \mathrm{~d} s\right]=\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} \mathbb{E}\left[\left(e^{B_{s}}-e^{B_{t_{k-1}}}\right)^{2}\right] \mathrm{d} s$,
where ( $*$ ) holds by the Itō isometry. Now for any $t_{k-1} \leq s \leq t_{k}$ we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(e^{B_{s}}-e^{B_{t_{k-1}}}\right)^{2}\right]=\mathbb{E}\left[e^{2 B_{t_{k-1}}}\left(e^{B_{s}-B_{t_{k-1}}}-1\right)^{2}\right] \stackrel{(\circ)}{=} \mathbb{E}\left[e^{2 B_{t_{k-1}}}\right] \mathbb{E}\left[\left(e^{B_{s}-B_{t_{k-1}}}-1\right)^{2}\right]= \\
& \mathbb{E}\left[e^{2 B_{t_{k-1}}}\right] \mathbb{E}\left[e^{2\left(B_{s}-B_{t_{k-1}}\right)}-2 e^{B_{s}-B_{t_{k-1}}}+1\right] \stackrel{(\bullet)}{=} e^{\frac{1}{2} 2^{2} t_{k-1}}\left(e^{\frac{1}{2} 2^{2}\left(s-t_{k-1}\right)}-2 e^{\frac{1}{2}\left(s-t_{k-1}\right)}+1\right) .
\end{aligned}
$$

where ( $\circ$ ) holds since Brownian motion has independent increments and in $(\bullet)$ we used the Help concerning moment generating functions as well as $B_{t_{k-1}} \sim \mathcal{N}\left(0, t_{k-1}\right)$ and $\left(B_{s}-B_{t_{k-1}}\right) \sim \mathcal{N}\left(0, s-t_{k-1}\right)$. Now

$$
\begin{aligned}
& \int_{t_{k-1}}^{t_{k}} e^{\frac{1}{2} 2^{2} t_{k-1}}\left(e^{\frac{1}{2} 2^{2}\left(s-t_{k-1}\right)}-2 e^{\frac{1}{2}\left(s-t_{k-1}\right)}+1\right) \mathrm{d} s= \\
& e^{2 t_{k-1}} \cdot {\left[\frac{1}{2}\left(e^{2\left(t_{k}-t_{k-1}\right)}-1\right)-4\left(e^{\frac{1}{2}\left(t_{k}-t_{k-1}\right)}-1\right)+\left(t_{k}-t_{k-1}\right)\right] }
\end{aligned}
$$

and putting together all of the above gives the desired (2).

