Midterm Exam - October 11, 2018, Stochastic Analysis, GROUP A

Family name	Given name
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let Y_1, Y_2, \ldots denote i.i.d. random variables with distribution

$$\mathbb{P}(Y_k = 1) = \frac{3}{4}, \qquad \mathbb{P}(Y_k = -1) = \frac{1}{4}.$$

Let $X_n = 1 + Y_1 + \dots + Y_n$. Let $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$. For $x \in \mathbb{Z}$, Let $T_x := \inf\{n : X_n = x\}$.

- (a) (2 marks) Find a constant $C \neq 1$ such that (C^{X_n}) is a martingale.
- (b) (2 marks) Give a formula for $q := \mathbb{P}(T_0 < T_6)$ using the optional stopping theorem. Instruction: You don't have to verify that the optional stopping theorem can be applied here. Instruction: It is enough to give a correct formula which contains C as a parameter.
- (c) (2 marks) Find a constant m such that $(X_n mn)$ is a martingale.
- (d) (2 marks) Give a formula for $\mathbb{E}(\min\{T_0, T_6\})$ using the optional stopping theorem. *Instruction:* You don't have to verify that the optional stopping theorem can be applied here. *Instruction:* It is enough to give a correct formula which contains q and m as parameters.

2. Let (B(t)) denote a standard Brownian motion.

Recall the definition of the stationary O.-U. process $X_t = e^{-2t}B(e^{4t})$.

- (a) (2 marks) Find the covariance matrix of (X_{-1}, X_1) .
- (b) (2 marks) Calculate the conditional expectation of X_1 given the σ -algebra generated by X_{-1} .
- (c) (3 marks) Calculate the conditional expectation of X_{-1} given the σ -algebra generated by X_1 .