1. Let Y_{1}, Y_{2}, \ldots denote i.i.d. random variables with distribution

$$
\mathbb{P}\left(Y_{k}=1\right)=\frac{3}{4}, \quad \mathbb{P}\left(Y_{k}=-1\right)=\frac{1}{4}
$$

Let $X_{n}=1+Y_{1}+\cdots+Y_{n}$. Let $\mathcal{F}_{n}=\sigma\left(Y_{1}, \ldots, Y_{n}\right)$. For $x \in \mathbb{Z}$, Let $T_{x}:=\inf \left\{n: X_{n}=x\right\}$.
(a) (2 marks) Find a constant $C \neq 1$ such that $\left(C^{X_{n}}\right)$ is a martingale.
(b) (2 marks) Give a formula for $q:=\mathbb{P}\left(T_{0}<T_{6}\right)$ using the optional stopping theorem.
(c) (2 marks) Find a constant m such that $\left(X_{n}-m n\right)$ is a martingale.
(d) (2 marks) Give a formula for $\mathbb{E}\left(\min \left\{T_{0}, T_{6}\right\}\right)$ using the optional stopping theorem.

Solution:

(a) $\mathbb{E}\left(C^{X_{n}} \mid \mathcal{F}_{n-1}\right)=C^{X_{n-1}} \mathbb{E}\left(C^{Y_{n}}\right)=C^{X_{n-1}}\left(\frac{3}{4} C+\frac{1}{4} \frac{1}{C}\right)$. We want $\frac{3}{4} C+\frac{1}{4} \frac{1}{C}=1$.

We want $\frac{3}{4} C^{2}-C+\frac{1}{4}=0$. Thus $C_{1,2}=\frac{1 \pm \sqrt{1-4 \frac{3}{4} \frac{1}{4}}}{2 \frac{3}{4}}$. Thus $C_{1}=1$ and $C_{2}=\frac{1}{3}$.
Thus $\left(3^{-X_{n}}\right)$ is a martingale.
(b) Let $\tau=\min \left\{T_{0}, T_{6}\right\} . C=C^{X_{0}}=\mathbb{E}\left(C^{X_{\tau}}\right)=q C^{0}+(1-q) C^{6}=C^{6}+q\left(C^{0}-C^{6}\right)$.

Thus $q=\frac{C-C^{6}}{1-C^{6}}$.
(c) $\mathbb{E}\left(X_{n}-m n \mid \mathcal{F}_{n-1}\right)=X_{n-1}-m(n-1)+\mathbb{E}\left(Y_{n}-m\right)=X_{n-1}-m(n-1)+\frac{1}{2}-m$, so $m=\frac{1}{2}$.
(d) $1=\mathbb{E}\left(X_{0}-m 0\right)=\mathbb{E}\left(X_{\tau}-m \tau\right)=\mathbb{E}\left(X_{\tau}\right)-m \mathbb{E}(\tau)$. Therefore:

$$
\mathbb{E}\left(\min \left\{T_{0}, T_{6}\right\}\right)=\mathbb{E}(\tau)=\frac{1}{m}\left(\mathbb{E}\left(X_{\tau}\right)-1\right)=\frac{1}{m}(q \cdot 0+(1-q) \cdot 6-1)=\frac{1}{m}(5-6 q)
$$

2. Let $(B(t))$ denote a standard Brownian motion.

Recall the definition of the stationary O.-U. process $X_{t}=e^{-2 t} B\left(e^{4 t}\right)$.
(a) (2 marks) Find the covariance matrix of $\left(X_{-1}, X_{1}\right)$.
(b) (2 marks) Calculate the conditional expectation of X_{1} given the σ-algebra generated by X_{-1}.
(c) (3 marks) Calculate the conditional expectation of X_{-1} given the σ-algebra generated by X_{1}.

Solution:

(a) $\operatorname{Cov}\left(X_{1}, X_{1}\right)=e^{-4} \operatorname{Cov}\left(B\left(e^{4}\right), B\left(e^{4}\right)\right)=e^{-4} e^{4}=1$.
$\operatorname{Cov}\left(X_{-1}, X_{-1}\right)=e^{4} \operatorname{Cov}\left(B\left(e^{-4}\right), B\left(e^{-4}\right)\right)=e^{4} e^{-4}=1$.
$\operatorname{Cov}\left(X_{-1}, X_{1}\right)=e^{2} e^{-2} \operatorname{Cov}\left(B\left(e^{-4}\right), B\left(e^{4}\right)\right)=e^{-4}$.
Thus $\underline{\underline{C}}=\left(\begin{array}{cc}1 & e^{-4} \\ e^{-4} & 1\end{array}\right)$.
(b)

$$
\begin{aligned}
& \mathbb{E}\left(X_{1} \mid X_{-1}\right)=\mathbb{E}\left(e^{-2} B\left(e^{4}\right) \mid e^{2} B\left(e^{-4}\right)\right)=e^{-2} \mathbb{E}\left(B\left(e^{4}\right) \mid B\left(e^{-4}\right)\right)= \\
& e^{-2} \mathbb{E}\left(B\left(e^{-4}\right)+\left(B\left(e^{4}\right)-B\left(e^{-4}\right)\right) \mid B\left(e^{-4}\right)\right)= \\
& e^{-2} \mathbb{E}\left(B\left(e^{-4}\right) \mid B\left(e^{-4}\right)\right)+e^{-2} \mathbb{E}\left(B\left(e^{4}\right)-B\left(e^{-4}\right) \mid B\left(e^{-4}\right)\right)=e^{-2} B\left(e^{-4}\right)+0=e^{-4} X_{-1}
\end{aligned}
$$

(c) Noting $\mathbb{E}\left(X_{-1}\right)=\mathbb{E}\left(X_{1}\right)=0$ and taking a look at $\underline{\underline{C}}$ we see that the multivariate normal random vector $\left(X_{-1}, X_{1}\right)$ has the same distribution as the multivariate normal random vector (X_{1}, X_{-1}). Therefore $\mathbb{E}\left(X_{-1} \mid X_{1}\right)=e^{-4} X_{1}$.

