Midterm Exam - October 11, 2018, Stochastic Analysis, GROUP A

1. Let Y_1, Y_2, \ldots denote i.i.d. random variables with distribution

$$\mathbb{P}(Y_k = 1) = \frac{3}{4}, \qquad \mathbb{P}(Y_k = -1) = \frac{1}{4}.$$

Let $X_n = 1 + Y_1 + \dots + Y_n$. Let $\mathcal{F}_n = \sigma(Y_1, \dots, Y_n)$. For $x \in \mathbb{Z}$, Let $T_x := \inf\{n : X_n = x\}$.

- (a) (2 marks) Find a constant $C \neq 1$ such that (C^{X_n}) is a martingale.
- (b) (2 marks) Give a formula for $q := \mathbb{P}(T_0 < T_6)$ using the optional stopping theorem.
- (c) (2 marks) Find a constant m such that $(X_n mn)$ is a martingale.
- (d) (2 marks) Give a formula for $\mathbb{E}(\min\{T_0, T_6\})$ using the optional stopping theorem.

Solution:

- (a) $\mathbb{E}(C^{X_n} | \mathcal{F}_{n-1}) = C^{X_{n-1}} \mathbb{E}(C^{Y_n}) = C^{X_{n-1}} \left(\frac{3}{4}C + \frac{1}{4}\frac{1}{C}\right)$. We want $\frac{3}{4}C + \frac{1}{4}\frac{1}{C} = 1$. We want $\frac{3}{4}C^2 - C + \frac{1}{4} = 0$. Thus $C_{1,2} = \frac{1\pm\sqrt{1-4\frac{3}{4}\frac{1}{4}}}{2\frac{3}{4}}$. Thus $C_1 = 1$ and $C_2 = \frac{1}{3}$. Thus (3^{-X_n}) is a martingale.
- (b) Let $\tau = \min\{T_0, T_6\}$. $C = C^{X_0} = \mathbb{E}(C^{X_\tau}) = qC^0 + (1-q)C^6 = C^6 + q(C^0 C^6)$. Thus $q = \frac{C - C^6}{1 - C^6}$.
- (c) $\mathbb{E}(X_n mn \mid \mathcal{F}_{n-1}) = X_{n-1} m(n-1) + \mathbb{E}(Y_n m) = X_{n-1} m(n-1) + \frac{1}{2} m$, so $m = \frac{1}{2}$.
- (d) $1 = \mathbb{E}(X_0 m0) = \mathbb{E}(X_\tau m\tau) = \mathbb{E}(X_\tau) m\mathbb{E}(\tau)$. Therefore: $\mathbb{E}(\min\{T_0, T_6\}) = \mathbb{E}(\tau) = \frac{1}{m}(\mathbb{E}(X_\tau) - 1) = \frac{1}{m}(q \cdot 0 + (1 - q) \cdot 6 - 1) = \frac{1}{m}(5 - 6q).$

2. Let (B(t)) denote a standard Brownian motion.

Recall the definition of the stationary O.-U. process $X_t = e^{-2t}B(e^{4t})$.

- (a) (2 marks) Find the covariance matrix of (X_{-1}, X_1) .
- (b) (2 marks) Calculate the conditional expectation of X_1 given the σ -algebra generated by X_{-1} .
- (c) (3 marks) Calculate the conditional expectation of X_{-1} given the σ -algebra generated by X_1 .

Solution:

(a)
$$\operatorname{Cov}(X_1, X_1) = e^{-4} \operatorname{Cov}(B(e^4), B(e^4)) = e^{-4}e^4 = 1.$$

 $\operatorname{Cov}(X_{-1}, X_{-1}) = e^4 \operatorname{Cov}(B(e^{-4}), B(e^{-4})) = e^4 e^{-4} = 1.$
 $\operatorname{Cov}(X_{-1}, X_1) = e^2 e^{-2} \operatorname{Cov}(B(e^{-4}), B(e^4)) = e^{-4}.$
Thus $\underline{\underline{C}} = \begin{pmatrix} 1 & e^{-4} \\ e^{-4} & 1 \end{pmatrix}.$

(b)

 \mathbb{E}

$$\begin{aligned} (X_1 | X_{-1}) &= \mathbb{E} \left(e^{-2} B(e^4) | e^2 B(e^{-4}) \right) = e^{-2} \mathbb{E} \left(B(e^4) | B(e^{-4}) \right) = \\ & e^{-2} \mathbb{E} \left(B(e^{-4}) + (B(e^4) - B(e^{-4})) | B(e^{-4}) \right) = \\ & e^{-2} \mathbb{E} \left(B(e^{-4}) | B(e^{-4}) \right) + e^{-2} \mathbb{E} \left(B(e^4) - B(e^{-4}) | B(e^{-4}) \right) = e^{-2} B(e^{-4}) + 0 = e^{-4} X_{-1} \end{aligned}$$

(c) Noting $\mathbb{E}(X_{-1}) = \mathbb{E}(X_1) = 0$ and taking a look at \underline{C} we see that the multivariate normal random vector (X_{-1}, X_1) has the same distribution as the multivariate normal random vector (X_1, X_{-1}) . Therefore $\mathbb{E}(X_{-1} | X_1) = e^{-4}X_1$.