Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $(B(t))$ denote a standard Brownian motion.

Recall the definition of the stationary O.-U. process $Y_{t}=e^{-t} B\left(e^{2 t}\right)$.
(a) (2 marks) Find the covariance matrix of $\left(Y_{-3}, Y_{3}\right)$.
(b) (2 marks) Calculate the conditional expectation of Y_{3} given the σ-algebra generated by Y_{-3}.
(c) (3 marks) Calculate the conditional expectation of Y_{-3} given the σ-algebra generated by Y_{3}.
2. Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with distribution

$$
\mathbb{P}\left(X_{k}=1\right)=\frac{4}{5}, \quad \mathbb{P}\left(X_{k}=-1\right)=\frac{1}{5}
$$

Let $Z_{n}=1+X_{1}+\cdots+X_{n}$. Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. For $x \in \mathbb{Z}$, Let $T_{x}:=\inf \left\{n: Z_{n}=x\right\}$.
(a) (2 marks) Find a constant $\alpha \neq 1$ such that $\left(\alpha^{Z_{n}}\right)$ is a martingale.
(b) (2 marks) Give a formula for $p:=\mathbb{P}\left(T_{0}<T_{7}\right)$ using the optional stopping theorem.

Instruction: You don't have to verify that the optional stopping theorem can be applied here. Instruction: It is enough to give a correct formula which contains α as a parameter.
(c) (2 marks) Find a constant μ such that $\left(Z_{n}-\mu n\right)$ is a martingale.
(d) (2 marks) Give a formula for $\mathbb{E}\left(\min \left\{T_{0}, T_{7}\right\}\right)$ using the optional stopping theorem.

Instruction: You don't have to verify that the optional stopping theorem can be applied here. Instruction: It is enough to give a correct formula which contains p and μ as parameters.

