Midterm Exam - October 11, 2018, Stochastic Analysis, GROUP B

Family name	Given name
-	
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let (B(t)) denote a standard Brownian motion.

Recall the definition of the stationary O.-U. process $Y_t = e^{-t}B(e^{2t})$.

- (a) (2 marks) Find the covariance matrix of (Y_{-3}, Y_3) .
- (b) (2 marks) Calculate the conditional expectation of Y_3 given the σ -algebra generated by Y_{-3} .
- (c) (3 marks) Calculate the conditional expectation of Y_{-3} given the σ -algebra generated by Y_3 .

2. Let X_1, X_2, \ldots denote i.i.d. random variables with distribution

$$\mathbb{P}(X_k = 1) = \frac{4}{5}, \qquad \mathbb{P}(X_k = -1) = \frac{1}{5}$$

Let $Z_n = 1 + X_1 + \dots + X_n$. Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. For $x \in \mathbb{Z}$, Let $T_x := \inf\{n : Z_n = x\}$.

- (a) (2 marks) Find a constant $\alpha \neq 1$ such that (α^{Z_n}) is a martingale.
- (b) (2 marks) Give a formula for $p := \mathbb{P}(T_0 < T_7)$ using the optional stopping theorem. *Instruction:* You don't have to verify that the optional stopping theorem can be applied here. *Instruction:* It is enough to give a correct formula which contains α as a parameter.
- (c) (2 marks) Find a constant μ such that $(Z_n \mu n)$ is a martingale.
- (d) (2 marks) Give a formula for $\mathbb{E}(\min\{T_0, T_7\})$ using the optional stopping theorem. *Instruction:* You don't have to verify that the optional stopping theorem can be applied here. *Instruction:* It is enough to give a correct formula which contains p and μ as parameters.