GROUP B

Family name

Given name

Signature

Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $(B(t))$ denote a standard Brownian motion.

Recall the definition of the stationary O.-U. process $Y_{t}=e^{-t} B\left(e^{2 t}\right)$.
(a) (2 marks) Find the covariance matrix of $\left(Y_{-3}, Y_{3}\right)$.
(b) (2 marks) Calculate the conditional expectation of Y_{3} given the σ-algebra generated by Y_{-3}.
(c) (3 marks) Calculate the conditional expectation of Y_{-3} given the σ-algebra generated by Y_{3}.

Solution:

(a) $\operatorname{Cov}\left(Y_{3}, Y_{3}\right)=e^{-6} \operatorname{Cov}\left(B\left(e^{6}\right), B\left(e^{6}\right)\right)=e^{-6} e^{6}=1$.
$\operatorname{Cov}\left(Y_{-3}, Y_{-3}\right)=e^{6} \operatorname{Cov}\left(B\left(e^{-6}\right), B\left(e^{-6}\right)\right)=e^{6} e^{-6}=1$.
$\operatorname{Cov}\left(Y_{-3}, Y_{3}\right)=e^{3} e^{-3} \operatorname{Cov}\left(B\left(e^{-6}\right), B\left(e^{6}\right)\right)=e^{-6}$.
Thus $\underline{\underline{C}}=\left(\begin{array}{cc}1 & e^{-6} \\ e^{-6} & 1\end{array}\right)$.
(b)

$$
\begin{aligned}
& \mathbb{E}\left(Y_{3} \mid Y_{-3}\right)=\mathbb{E}\left(e^{-3} B\left(e^{6}\right) \mid e^{3} B\left(e^{-6}\right)\right)=e^{-3} \mathbb{E}\left(B\left(e^{6}\right) \mid B\left(e^{-6}\right)\right)= \\
& e^{-3} \mathbb{E}\left(B\left(e^{-6}\right)+\left(B\left(e^{6}\right)-B\left(e^{-6}\right)\right) \mid B\left(e^{-6}\right)\right)= \\
& e^{-3} \mathbb{E}\left(B\left(e^{-6}\right) \mid B\left(e^{-6}\right)\right)+e^{-3} \mathbb{E}\left(B\left(e^{6}\right)-B\left(e^{-6}\right) \mid B\left(e^{-6}\right)\right)=e^{-3} B\left(e^{-6}\right)+0=e^{-6} Y_{-3}
\end{aligned}
$$

(c) Noting $\mathbb{E}\left(Y_{-3}\right)=\mathbb{E}\left(Y_{3}\right)=0$ and taking a look at $\underline{\underline{C}}$ we see that the multivariate normal random vector $\left(Y_{-3}, Y_{3}\right)$ has the same distribution as the multivariate normal random vector $\left(Y_{3}, Y_{-3}\right)$. Therefore $\mathbb{E}\left(Y_{-3} \mid Y_{3}\right)=e^{-6} Y_{3}$.
2. Let X_{1}, X_{2}, \ldots denote i.i.d. random variables with distribution

$$
\mathbb{P}\left(X_{k}=1\right)=\frac{4}{5}, \quad \mathbb{P}\left(X_{k}=-1\right)=\frac{1}{5}
$$

Let $Z_{n}=1+X_{1}+\cdots+X_{n}$. Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. For $x \in \mathbb{Z}$, Let $T_{x}:=\inf \left\{n: Z_{n}=x\right\}$.
(a) (2 marks) Find a constant $\alpha \neq 1$ such that $\left(\alpha^{Z_{n}}\right)$ is a martingale.
(b) (2 marks) Give a formula for $p:=\mathbb{P}\left(T_{0}<T_{7}\right)$ using the optional stopping theorem.

Instruction: You don't have to verify that the optional stopping theorem can be applied here. Instruction: It is enough to give a correct formula which contains α as a parameter.
(c) (2 marks) Find a constant μ such that $\left(Z_{n}-\mu n\right)$ is a martingale.
(d) (2 marks) Give a formula for $\mathbb{E}\left(\min \left\{T_{0}, T_{7}\right\}\right)$ using the optional stopping theorem.

Instruction: You don't have to verify that the optional stopping theorem can be applied here. Instruction: It is enough to give a correct formula which contains p and μ as parameters.

Solution:

(a) $\mathbb{E}\left(\alpha^{Z_{n}} \mid \mathcal{F}_{n-1}\right)=\alpha^{Z_{n-1}} \mathbb{E}\left(\alpha^{X_{n}}\right)=\alpha^{Z_{n-1}}\left(\frac{4}{5} \alpha+\frac{1}{5} \frac{1}{\alpha}\right)$. We want $\frac{4}{5} \alpha+\frac{1}{5} \frac{1}{\alpha}=1$.

We want $\frac{4}{5} \alpha^{2}-\alpha+\frac{1}{5}=0$. Thus $\alpha_{1,2}=\frac{1 \pm \sqrt{1-4 \frac{4}{5} \frac{1}{5}}}{2 \frac{4}{5}}$. Thus $\alpha_{1}=1$ and $\alpha_{2}=\frac{1}{4}$.
Thus $\left(4^{-Z_{n}}\right)$ is a martingale.
(b) Let $\tau=\min \left\{T_{0}, T_{7}\right\} . \alpha=\alpha^{Z_{0}}=\mathbb{E}\left(\alpha^{Z_{\tau}}\right)=p \alpha^{0}+(1-p) \alpha^{7}=\alpha^{7}+p\left(\alpha^{0}-\alpha^{7}\right)$.

Thus $p=\frac{\alpha-\alpha^{7}}{1-\alpha^{7}}$.
(c) $\mathbb{E}\left(Z_{n}-\mu n \mid \mathcal{F}_{n-1}\right)=Z_{n-1}-\mu(n-1)+\mathbb{E}\left(X_{n}-\mu\right)=Z_{n-1}-\mu(n-1)+\frac{3}{5}-\mu$, so $\mu=\frac{3}{5}$.
(d) $1=\mathbb{E}\left(Z_{0}-\mu 0\right)=\mathbb{E}\left(Z_{\tau}-\mu \tau\right)=\mathbb{E}\left(Z_{\tau}\right)-\mu \mathbb{E}(\tau)$. Therefore:
$\mathbb{E}\left(\min \left\{T_{0}, T_{7}\right\}\right)=\mathbb{E}(\tau)=\frac{1}{\mu}\left(\mathbb{E}\left(Z_{\tau}\right)-1\right)=\frac{1}{\mu}(p \cdot 0+(1-p) \cdot 7-1)=\frac{1}{\mu}(6-7 p)$.

