Midterm Exam (first midterm) - December 6, 2018, Stochastic Analysis

Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with $\mathbf{1 5}$ formulas is allowed.

1. Let $\left(B_{t}\right)$ denote standard Brownian motion.
(a) (4 marks) Let Z be a random variable with standard normal distribution which is independent from $\left(B_{t}\right)$. Let $Y=a B_{3}+b Z$. How to choose the positive constants a and b if we want $\left(Y, B_{3}\right)$ to have the same joint distribution as $\left(B_{2}, B_{3}\right)$?
(b) (2 marks) What is the conditional density function of B_{2} if we condition on $B_{3}=y$ for some $y \in \mathbb{R}$?
(c) (1 mark) What is the conditional density function of B_{3} if we condition on $B_{2}=z$ for some $z \in \mathbb{R}$?
2. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$.
(a) (4 marks) Let $X_{n}=\left(2 S_{n}-1\right)^{2}$ for $n \in \mathbb{N}$. Find the discrete Doob-Meyer decomposition of the process $\left(X_{n}\right)_{n \geq 1}$, i.e., write

$$
\left(2 S_{n}-1\right)^{2}=A_{n}+M_{n}
$$

where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Give a simple and explicit formula for A_{n}.
(b) (2 marks) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}.
(c) (2 marks) Calculate $\operatorname{Var}\left(X_{n}\right)$ using the results of the previous sub-exercises and the Pythagorean theorem for square-integrable martingales.

