Midterm Exam (first midterm) - December 12, 2018, Stochastic Analysis

Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad
No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let (X, Y) denote a pair of continuous random variables with joint density function

$$
f(x, y)=c \exp \left(-\frac{5}{2} x^{2}-3 x y-y^{2}\right)
$$

(a) (2 marks) Rewrite the joint density function in the form

$$
f(\underline{x})=\frac{1}{\sqrt{\operatorname{det}(\underline{\underline{C}})}} \frac{1}{\sqrt{2 \pi}^{n}} \exp \left(-\frac{1}{2}(\underline{x}-\underline{m})^{T} \underline{\underline{C}}^{-1}(\underline{x}-\underline{m})\right)
$$

for some appropriate choice of $n, \underline{\underline{C}}$ and \underline{m}.
(b) (1 marks) Find the normalizing constant c in the formula defining $f(x, y)$ above.
(c) (2 marks) Find the density function $f_{X}(x)$ of X.
(d) (3 marks) Find $\mathbb{E}(Y \mid \sigma(X))$.

Hint: All of the above tasks can be solved without calculating integrals: use the facts learnt about multivariate normal distribution in class.
2. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$.
(a) (3 marks) How to choose $C \in \mathbb{R}_{+}$if we want $M_{n}=2^{S_{n}} / C^{n}$ to be a martingale?
(b) (4 marks) Write $M_{n}-M_{0}$ as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}.

