Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (a) (5 marks) Find the covariance of $\int_{0}^{3}\left(2-7 B_{u}\right) \mathrm{d} B_{u}$ and $\int_{0}^{5}\left(2 B_{u}^{2}-1\right) \mathrm{d} B_{u}$.
(b) (2 marks) Find a simple closed formula for the value of $\int_{0}^{3}\left(2-7 B_{u}\right) \mathrm{d} B_{u}$.
2. Let us define

$$
X_{t}=\frac{1}{\sqrt{4-t}} \exp \left(\frac{B_{t}^{2}}{2 t-8}\right), \quad 0 \leq t \leq 2
$$

(a) (4 marks) Show that $\left(X_{t}\right)_{0 \leq t \leq 2}$ is a martingale.
(b) (4 marks) Let $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right)$ denote the sigma-algebra generated by the Brownian motion up to time t. Find the constant C and the process $\left(Y_{t}\right)_{0 \leq t \leq 2}$ adapted to the filtration $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq 2}$ such that

$$
\exp \left(-\frac{1}{4} B_{2}^{2}\right)=C+\int_{0}^{2} Y_{s} \mathrm{~d} B_{s}
$$

