Midterm Exam (second midterm) - December 6, 2018, Stochastic Analysis

Family name	Given name	
Signature	Neptun Code	

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (a) (4 marks) Find a simple explicit formula (in terms of t and B_t) for the non-negative process (Y_t) satisfying

$$Y_t = 3 + 2\int_0^t Y_s \, \mathrm{d}B_s + 4\int_0^t Y_s \, \mathrm{d}s$$

Hint: First calculate $d \ln(Y_t)$.

(b) (4 marks) Find a deterministic function $f : \mathbb{R}_+ \to \mathbb{R}$ with f(0) = 1 such that (M_t) is a martinage, where

$$M_t = f(t)Y_t$$

- 2. Let us define $Z_t = \int_0^t (t-u)(t+u) dB_u$ for any $t \ge 0$.
 - (a) (3 marks) Show that (Z_t) is an *Itô process* by rewriting it in the form $Z_t = Z_0 + \int_0^t \mu_u du + \int_0^t \sigma_u dB_u$.
 - (b) (2 marks) Calculate the quadratic variation $[Z]_t$.
 - (c) (2 marks) Calculate the variance of Z_2 .