Midterm Exam (second midterm) - December 6, 2018, Stochastic Analysis

Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (a) (4 marks) Find a simple explicit formula (in terms of t and B_{t}) for the non-negative process $\left(Y_{t}\right)$ satisfying

$$
Y_{t}=3+2 \int_{0}^{t} Y_{s} \mathrm{~d} B_{s}+4 \int_{0}^{t} Y_{s} \mathrm{~d} s
$$

Hint: First calculate $\mathrm{d} \ln \left(Y_{t}\right)$.
(b) (4 marks) Find a deterministic function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ with $f(0)=1$ such that $\left(M_{t}\right)$ is a martinage, where

$$
M_{t}=f(t) Y_{t}
$$

2. Let us define $Z_{t}=\int_{0}^{t}(t-u)(t+u) \mathrm{d} B_{u}$ for any $t \geq 0$.
(a) (3 marks) Show that $\left(Z_{t}\right)$ is an Itô process by rewriting it in the form $Z_{t}=Z_{0}+\int_{0}^{t} \mu_{u} \mathrm{~d} u+\int_{0}^{t} \sigma_{u} \mathrm{~d} B_{u}$.
(b) (2 marks) Calculate the quadratic variation $[Z]_{t}$.
(c) (2 marks) Calculate the variance of Z_{2}.
