Midterm Exam - November 24, 2016, Stochastic Analysis

Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with $\mathbf{1 5}$ formulas is allowed.

1. (5 marks) Calculate the variance of $\int_{0}^{3} e^{2 B_{t}-2 t} \mathrm{~d} B_{t}$.

Hint: The moment generating function of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is $M(\lambda)=e^{\mu \lambda+\frac{1}{2} \sigma^{2} \lambda^{2}}$.
2. (5 marks) Give an explicit formula for the cumulative distribution function $F(x)=\mathbb{P}(X \leq x), x \in \mathbb{R}$ of the random variable X, where

$$
X=\int_{0}^{2} \frac{\mathrm{~d} B_{s}}{1+B_{s}^{2}}-\int_{0}^{2} \frac{B_{s} \mathrm{~d} s}{\left(B_{s}^{2}+1\right)^{2}}
$$

Hint: You may use $\Phi(\cdot)$, the c.d.f. of the standard normal distribution in your solution.
3. (5 marks) Let $\left(B_{t}\right)$ and $\left(\widetilde{B}_{t}\right)$ denote i.i.d. standard Brownian motions. Show that $M_{t}=4 B_{t}^{3} \widetilde{B}_{t}-4 B_{t} \widetilde{B}_{t}^{3}$ is a martingale by writing it as $M_{t}=\int_{0}^{t} X_{s} \mathrm{~d} B_{s}+\int_{0}^{t} \widetilde{X}_{s} \mathrm{~d} \widetilde{B}_{s}$ for some adapted processes $\left(X_{t}\right)$ and $\left(\widetilde{X}_{t}\right)$.

