Family name \qquad

Given name

\qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let us define $g(x)=2 x+1$. We approximate the stochastic integral $\mathcal{I}=\int_{0}^{1} g(B(t)) \mathrm{d} B(t)$ with the sum

$$
\mathcal{I}_{n}=\sum_{k=1}^{n} g\left(B\left(\frac{k-1}{n}\right)\right) \cdot\left(B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right) .
$$

(a) (1 marks) Find the simple predictable function $\left(X_{n}(t)\right), 0 \leq t \leq 1$ for which $\mathcal{I}_{n}=\int_{0}^{1} X_{n}(t) \mathrm{d} B(t)$.
(b) (4 marks) What is the smallest value of n for which $\mathbb{E}\left(\left(\mathcal{I}-\mathcal{I}_{n}\right)^{2}\right) \leq \frac{1}{100}$ holds?
2. (5 marks) Find the Doob-Meyer decomposition $X_{t}=A_{t}+M_{t}$ of

$$
X_{t}=e^{-4 B_{t}-8 t}
$$

where A_{t} is an adapted process with finite total variation and M_{t} is a martingale. Write M_{t} as an Ito integral w.r.t. Brownian motion.
3. (5 marks) Let $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ denote Itô processes that satisfy

$$
X_{t}=1-\int_{0}^{t} Y_{s} \mathrm{~d} B_{s}, \quad Y_{t}=\int_{0}^{t} X_{s} \mathrm{~d} B_{s}
$$

Find the exact value of $Z_{t}=X_{t}^{2}+Y_{t}^{2}$ for any $t \geq 0$. Hint: First calculate $\mathrm{d} Z_{t}$.

