Second make-up midterm - December 7, 2016, 17.15-18.00, Stochastic Analysis

1. Let us define $g(x)=2 x+1$. We approximate the stochastic integral $\mathcal{I}=\int_{0}^{1} g(B(t)) \mathrm{d} B(t)$ with the sum

$$
\mathcal{I}_{n}=\sum_{k=1}^{n} g\left(B\left(\frac{k-1}{n}\right)\right) \cdot\left(B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right) .
$$

(a) (1 marks) Find the simple predictable function $\left(X_{n}(t)\right), 0 \leq t \leq 1$ for which $\mathcal{I}_{n}=\int_{0}^{1} X_{n}(t) \mathrm{d} B(t)$.
(b) (4 marks) What is the smallest value of n for which $\mathbb{E}\left(\left(\mathcal{I}-\mathcal{I}_{n}\right)^{2}\right) \leq \frac{1}{100}$ holds?
2. (5 marks) Find the Doob-Meyer decomposition $X_{t}=A_{t}+M_{t}$ of

$$
X_{t}=e^{-4 B_{t}-8 t},
$$

where A_{t} is an adapted process with finite total variation and M_{t} is a martingale. Write M_{t} as an Ito integral w.r.t. Brownian motion.
3. (5 marks) Let $\left(X_{t}\right)$ and $\left(Y_{t}\right)$ denote Itô processes that satisfy

$$
X_{t}=1-\int_{0}^{t} Y_{s} \mathrm{~d} B_{s}, \quad Y_{t}=\int_{0}^{t} X_{s} \mathrm{~d} B_{s}
$$

Find the exact value of $Z_{t}=X_{t}^{2}+Y_{t}^{2}$ for any $t \geq 0$. Hint: First calculate $\mathrm{d} Z_{t}$.

Solutions.

1. (a) Let us define the partition $\Delta_{n}=\left\{t_{0}, \ldots, t_{n}\right\}$ of the interval $[0,1]$ by setting $t_{k}=\frac{k}{n}$. Then

$$
X_{n}(t)=\sum_{k=1}^{n} g\left(B\left(t_{k-1}\right)\right) \mathbb{1}\left[t_{k-1}<t \leq t_{k}\right] .
$$

(b) We use the Itô isometry:

$$
\begin{aligned}
& \mathbb{E}\left(\left(\mathcal{I}-\mathcal{I}_{n}\right)^{2}\right)=\int_{0}^{1} \mathbb{E}\left[\left(g\left(B_{t}\right)-X_{n}(t)\right)^{2}\right] \mathrm{d} t=\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} \mathbb{E}\left[\left(g(B(t))-g\left(B\left(t_{k-1}\right)\right)\right)^{2}\right] \mathrm{d} t= \\
& \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} \mathbb{E}\left[\left(2\left(B(t)-B\left(t_{k-1}\right)\right)\right)^{2}\right] \mathrm{d} t=4 \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}}\left(t-t_{k-1}\right) \mathrm{d} t=4 \sum_{k=1}^{n} \frac{1}{2}\left(t_{k}-t_{k-1}\right)^{2}
\end{aligned}
$$

Now by $t_{k}=\frac{k}{n}$ we obtain $t_{k}-t_{k-1}=\frac{1}{n}$, thus $\mathbb{E}\left(\left(\mathcal{I}-\mathcal{I}_{n}\right)^{2}\right)=4 \sum_{k=1}^{n} \frac{1}{2} \frac{1}{n^{2}}=\frac{2}{n}$.
Thus the smallest value of n for which we have $\mathbb{E}\left(\left(\mathcal{I}-\mathcal{I}_{n}\right)^{2}\right) \leq \frac{1}{100}$ is $n=200$.
2. $f(t, x)=e^{-4 x-8 t}, f_{x}=-4 f, f_{x x}=16 f, f_{t}=-8 f$. We use the time-dependent Itô formula:

$$
\begin{aligned}
& \mathrm{d} f\left(t, B_{t}\right)=f_{x}\left(t, B_{t}\right) \mathrm{d} B_{t}+f_{t}\left(t, B_{t}\right) \mathrm{d} t+\frac{1}{2} f_{x x}\left(t, B_{t}\right) \mathrm{d}[B]_{t}= \\
& f_{x}\left(t, B_{t}\right) \mathrm{d} B_{t}+\left(f_{t}\left(t, B_{t}\right)+\frac{1}{2} f_{x x}\left(t, B_{t}\right)\right) \mathrm{d} t=f_{x}\left(t, B_{t}\right) \mathrm{d} B_{t}
\end{aligned}
$$

Thus $M_{t}=f\left(t, B_{t}\right)$ is a martingale, so $A_{t} \equiv 0 . M_{t}=\int_{0}^{t}-4 e^{-4 x-8 t} \mathrm{~d} B_{t}$.
3. We have $\mathrm{d} X_{t}=-Y_{t} \mathrm{~d} B_{t}$ and $\mathrm{d} Y_{t}=X_{t} \mathrm{~d} B_{t}$ and thus

$$
\begin{aligned}
\mathrm{d} Z_{t}=\mathrm{d} X_{t}^{2}+\mathrm{d} Y_{t}^{2}=(& \left.2 X_{t} \mathrm{~d} X_{t}+\frac{1}{2} 2 \mathrm{~d}[X]_{t}\right)+\left(2 Y_{t} \mathrm{~d} Y_{t}+\frac{1}{2} 2 \mathrm{~d}[Y]_{t}\right)= \\
& \left(2 X_{t}\left(-Y_{t}\right) \mathrm{d} B_{t}+\left(-Y_{t}\right)^{2} \mathrm{~d} t\right)+\left(2 Y_{t} X_{t} \mathrm{~d} B_{t}+\left(X_{t}\right)^{2} \mathrm{~d} t\right)=\left(Y_{t}^{2}+X_{t}^{2}\right) \mathrm{d} t=Z_{t} \mathrm{~d} t
\end{aligned}
$$

Therefore $\frac{\mathrm{d}}{\mathrm{d} t} Z_{t}=Z_{t}$, i.e., $Z_{t}^{\prime}=Z_{t}$ and also $Z_{0}=1^{2}+0^{2}=1$, so $Z_{t}=e^{t}$.

