Midterm Exam - November 24, 2016, Stochastic Analysis

Family name	Given name
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (5 marks) Calculate the variance of $\int_0^3 e^{2B_t - 2t} dB_t$.

Hint: The moment generating function of $X \sim \mathcal{N}(\mu, \sigma^2)$ is $M(\lambda) = e^{\mu\lambda + \frac{1}{2}\sigma^2\lambda^2}$.

2. (5 marks) Give an explicit formula for the cumulative distribution function $F(x) = \mathbb{P}(X \le x), x \in \mathbb{R}$ of the random variable X, where

$$X = \int_0^2 \frac{\mathrm{d}B_s}{1+B_s^2} - \int_0^2 \frac{B_s \mathrm{d}s}{(B_s^2+1)^2}.$$

Hint: You may use $\Phi(\cdot)$, the c.d.f. of the standard normal distribution in your solution.

3. (5 marks) Let (B_t) and (\tilde{B}_t) denote i.i.d. standard Brownian motions. Show that $M_t = 4B_t^3 \tilde{B}_t - 4B_t \tilde{B}_t^3$ is a martingale by writing it as $M_t = \int_0^t X_s dB_s + \int_0^t \tilde{X}_s d\tilde{B}_s$ for some adapted processes (X_t) and (\tilde{X}_t) .

Solutions.

1. Let $Y = \int_0^3 e^{2B_t - 2t} dB_t$. We know $\mathbb{E}[Y] = 0$ so $\operatorname{Var}(Y) = \mathbb{E}[Y^2]$. We use Itô isometry:

$$\mathbb{E}[Y^2] = \mathbb{E}[\int_0^3 (e^{2B_t - 2t})^2 dt] = \int_0^3 e^{-4t} \mathbb{E}[e^{4B_t}] dt \stackrel{(*)}{=} \int_0^3 e^{4t} dt = \frac{e^{12} - 1}{4}$$

where in (*) we used that $B_t \sim \mathcal{N}(0, t)$, so $\mathbb{E}[e^{4B_t}] = M(4) = e^{\frac{1}{2}t4^2} = e^{8t}$. Alternative solution: we have learnt (see page 118) that $M_t = 1 + \int_0^t \lambda M_s dB_s$ where $M_t = e^{\lambda B_t - \frac{1}{2}\lambda^2 t}$. Now $\lambda = 2$ and t = 3, so $Y = \int_0^3 M_t dB_t = (M_3 - 1)/2$. Now $M_3 = e^{2B_3 - 6}$ and

$$\operatorname{Var}(Y) = \operatorname{Var}(\frac{M_3 - 1}{2}) = \frac{1}{4} \operatorname{Var}(M_3) = \frac{1}{4} (\mathbb{E}(M_3^2) - \mathbb{E}(M_3)^2) = \frac{e^{-12}e^{\frac{1}{2}3 \cdot 4^2} - 1^2}{4} = \frac{e^{12} - 1}{4}.$$

2. If $g(x) = \frac{1}{1+x^2}$ then $g'(x) = \frac{-2x}{(1+x^2)^2}$, so $X = \int_0^2 g(B_s) dB_s + \int_0^2 \frac{1}{2} g'(B_s) ds$.

Now if $\int g(x)dx = f(x) + c$ then $X = \int_0^2 f'(B_s)dB_s + \frac{1}{2}\int_0^2 f''(B_s)ds = f(B_2) - f(B_0)$ by Itô's formula. $f(x) = \arctan(x)$ and $\arctan(0) = 0$, thus $X = \arctan(B_2)$, thus for any $x \in (-\pi/2, \pi/2)$ we have

$$F(x) = \mathbb{P}(X \le x) = \mathbb{P}(\arctan(B_2) \le x) = \mathbb{P}(B_2 \le \tan(x)) = \mathbb{P}\left(\frac{B_2}{\sqrt{2}} \le \frac{\tan(x)}{\sqrt{2}}\right) = \Phi\left(\frac{\tan(x)}{\sqrt{2}}\right)$$

3. $M_t = f(B_t, \tilde{B}_t)$ where $f(x, y) = 4x^3y - 4xy^3$.

$$f_x = 12x^2y - 4y^3$$
, $f_y = 4x^3 - 12xy^2$, $f_{xx} = 24xy$, $f_{yy} = -24xy$, $\Delta f = f_{xx} + f_{yy} \equiv 0$.

We use the multivariate Itô's formula:

$$\mathrm{d}M_t = \mathrm{d}f(B_t, \widetilde{B}_t) = f_x(B_t, \widetilde{B}_t)\mathrm{d}B_t + f_y(B_t, \widetilde{B}_t)\mathrm{d}\widetilde{B}_t + \frac{1}{2}\Delta f(B_t, \widetilde{B}_t)\mathrm{d}t,$$

the coefficient of dt vanishes, thus M_t is a martingale and

$$M_t = \int_0^t (12B_s^2 \widetilde{B}_s - 4\widetilde{B}_s^3) \mathrm{d}B_s + \int_0^t (4B_s^3 - 12B_s\widetilde{B}_s^2) \mathrm{d}\widetilde{B}_s$$

Remark: f(x, y) is harmonic because $f(x, y) = \text{Im}(z^4) = \text{Im}((x + iy)^4)$.