\qquad

Signature

\qquad

Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (5 marks) Calculate the variance of $\int_{0}^{3} e^{2 B_{t}-2 t} \mathrm{~d} B_{t}$.

Hint: The moment generating function of $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is $M(\lambda)=e^{\mu \lambda+\frac{1}{2} \sigma^{2} \lambda^{2}}$.
2. (5 marks) Give an explicit formula for the cumulative distribution function $F(x)=\mathbb{P}(X \leq x), x \in \mathbb{R}$ of the random variable X, where

$$
X=\int_{0}^{2} \frac{\mathrm{~d} B_{s}}{1+B_{s}^{2}}-\int_{0}^{2} \frac{B_{s} \mathrm{~d} s}{\left(B_{s}^{2}+1\right)^{2}}
$$

Hint: You may use $\Phi(\cdot)$, the c.d.f. of the standard normal distribution in your solution.
3. (5 marks) Let $\left(B_{t}\right)$ and ($\left.\widetilde{B}_{t}\right)$ denote i.i.d. standard Brownian motions. Show that $M_{t}=4 B_{t}^{3} \widetilde{B}_{t}-4 B_{t} \widetilde{B}_{t}^{3}$ is a martingale by writing it as $M_{t}=\int_{0}^{t} X_{s} \mathrm{~d} B_{s}+\int_{0}^{t} \widetilde{X}_{s} \mathrm{~d} \widetilde{B}_{s}$ for some adapted processes $\left(X_{t}\right)$ and $\left(\widetilde{X}_{t}\right)$.

Solutions.

1. Let $Y=\int_{0}^{3} e^{2 B_{t}-2 t} \mathrm{~d} B_{t}$. We know $\mathbb{E}[Y]=0$ so $\operatorname{Var}(Y)=\mathbb{E}\left[Y^{2}\right]$. We use Itô isometry:

$$
\mathbb{E}\left[Y^{2}\right]=\mathbb{E}\left[\int_{0}^{3}\left(e^{2 B_{t}-2 t}\right)^{2} \mathrm{~d} t\right]=\int_{0}^{3} e^{-4 t} \mathbb{E}\left[e^{4 B_{t}}\right] \mathrm{d} t \stackrel{(*)}{=} \int_{0}^{3} e^{4 t} \mathrm{~d} t=\frac{e^{12}-1}{4}
$$

where in $(*)$ we used that $B_{t} \sim \mathcal{N}(0, t)$, so $\mathbb{E}\left[e^{4 B_{t}}\right]=M(4)=e^{\frac{1}{2} t 4^{2}}=e^{8 t}$.
Alternative solution: we have learnt (see page 118) that $M_{t}=1+\int_{0}^{t} \lambda M_{s} \mathrm{~d} B_{s}$ where $M_{t}=e^{\lambda B_{t}-\frac{1}{2} \lambda^{2} t}$. Now $\lambda=2$ and $t=3$, so $Y=\int_{0}^{3} M_{t} \mathrm{~d} B_{t}=\left(M_{3}-1\right) / 2$. Now $M_{3}=e^{2 B_{3}-6}$ and

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(\frac{M_{3}-1}{2}\right)=\frac{1}{4} \operatorname{Var}\left(M_{3}\right)=\frac{1}{4}\left(\mathbb{E}\left(M_{3}^{2}\right)-\mathbb{E}\left(M_{3}\right)^{2}\right)=\frac{e^{-12} e^{\frac{1}{2} 3 \cdot 4^{2}}-1^{2}}{4}=\frac{e^{12}-1}{4} .
$$

2. If $g(x)=\frac{1}{1+x^{2}}$ then $g^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$, so $X=\int_{0}^{2} g\left(B_{s}\right) \mathrm{d} B_{s}+\int_{0}^{2} \frac{1}{2} g^{\prime}\left(B_{s}\right) \mathrm{d} s$.

Now if $\int g(x) \mathrm{d} x=f(x)+c$ then $X=\int_{0}^{2} f^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{2} f^{\prime \prime}\left(B_{s}\right) \mathrm{d} s=f\left(B_{2}\right)-f\left(B_{0}\right)$ by Itô's formula. $f(x)=\arctan (x)$ and $\arctan (0)=0$, thus $X=\arctan \left(B_{2}\right)$, thus for any $x \in(-\pi / 2, \pi / 2)$ we have

$$
F(x)=\mathbb{P}(X \leq x)=\mathbb{P}\left(\arctan \left(B_{2}\right) \leq x\right)=\mathbb{P}\left(B_{2} \leq \tan (x)\right)=\mathbb{P}\left(\frac{B_{2}}{\sqrt{2}} \leq \frac{\tan (x)}{\sqrt{2}}\right)=\Phi\left(\frac{\tan (x)}{\sqrt{2}}\right)
$$

3. $M_{t}=f\left(B_{t}, \widetilde{B}_{t}\right)$ where $f(x, y)=4 x^{3} y-4 x y^{3}$.

$$
f_{x}=12 x^{2} y-4 y^{3}, \quad f_{y}=4 x^{3}-12 x y^{2}, \quad f_{x x}=24 x y, \quad f_{y y}=-24 x y, \quad \Delta f=f_{x x}+f_{y y} \equiv 0
$$

We use the multivariate Itô's formula:

$$
\mathrm{d} M_{t}=\mathrm{d} f\left(B_{t}, \widetilde{B}_{t}\right)=f_{x}\left(B_{t}, \widetilde{B}_{t}\right) \mathrm{d} B_{t}+f_{y}\left(B_{t}, \widetilde{B}_{t}\right) \mathrm{d} \widetilde{B}_{t}+\frac{1}{2} \Delta f\left(B_{t}, \widetilde{B}_{t}\right) \mathrm{d} t
$$

the coefficient of $\mathrm{d} t$ vanishes, thus M_{t} is a martingale and

$$
M_{t}=\int_{0}^{t}\left(12 B_{s}^{2} \widetilde{B}_{s}-4 \widetilde{B}_{s}^{3}\right) \mathrm{d} B_{s}+\int_{0}^{t}\left(4 B_{s}^{3}-12 B_{s} \widetilde{B}_{s}^{2}\right) \mathrm{d} \widetilde{B}_{s}
$$

Remark: $f(x, y)$ is harmonic because $f(x, y)=\operatorname{Im}\left(z^{4}\right)=\operatorname{Im}\left((x+i y)^{4}\right)$.

