Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (5 marks) We say that two stochastic processes $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law if for every choice of $n \geq 1$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the joint distributions of $\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right)$ and $\left(Y\left(t_{1}\right), Y\left(t_{2}\right), \ldots, Y\left(t_{n}\right)\right)$ are the same. Denote by $(B(t))$ the standard Brownian motion.
Given $\alpha \in\left(-\frac{1}{2},+\infty\right)$, find $\beta \in \mathbb{R}_{+}$and $c>0$ so that $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law, where

$$
X(t)=B\left(c \cdot t^{\beta}\right), \quad Y(t)=\int_{0}^{t} s^{\alpha} \mathrm{d} B(s)
$$

Briefly explain why $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law using results seen in class.
2. Let us define $Y_{t}=\int_{0}^{t} \ln \left(\frac{1+t}{1+s}\right) \mathrm{d} B_{s}$ for any $t \geq 0$.
(a) (3 marks) Show that $\left(Y_{t}\right)$ is an Itô process by rewriting it in the form $Y_{t}=Y_{0}+\int_{0}^{t} \mu_{s} \mathrm{~d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}$.
(b) (2 marks) Calculate the quadratic variation $[Y]_{t}$.
3. (5 marks) How to choose the differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ so that

$$
M_{t}=g(t) \cos \left(2 B_{t}\right)
$$

is a martingale with $M_{0}=3$?

