Family name \qquad Given name \qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let us define

$$
X_{t}=e^{-2 t} X_{0}+2 \int_{0}^{t} e^{2(u-t)} \mathrm{d} B_{u}
$$

where X_{0} is independent of $\left(B_{t}\right)$ and $X_{0} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ with $\mu=-1$ and $\sigma^{2}=9$.
(a) (1 marks) Calculate $\mathbb{E}\left(X_{t}\right)$ for any $t \geq 0$.
(b) (4 marks) Calculate $\operatorname{Var}\left(X_{t}\right)$ for any $t \geq 0$.
2. Let us define $Y_{t}=\int_{0}^{t}\left(t^{2}-s^{2}\right) \mathrm{d} B_{s}$ for any $t \geq 0$.
(a) (3 marks) Show that $\left(Y_{t}\right)$ is an Itô process by rewriting it in the form $Y_{t}=Y_{0}+\int_{0}^{t} \mu_{s} \mathrm{~d} s+\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}$.
(b) (2 marks) Calculate the quadratic variation $[Y]_{t}$.
3. (5 marks) Find a non-negative process $\left(Z_{t}\right)$ satisfying

$$
\mathrm{d} Z_{t}=Z_{t} \mathrm{~d} B_{t}+Z_{t} \mathrm{~d} t, \quad Z_{0}=2
$$

Hint: First calculate the stochastic differential of $\log \left(Z_{t}\right)$ using Itô's formula for Itô processes.

