Second make-up midterm - December 13, 2016, 10.15-11.00, Stochastic Analysis

Family name	Given name
-	
Signature	Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let us define

$$X_t = e^{-2t} X_0 + 2 \int_0^t e^{2(u-t)} \, \mathrm{d}B_u,$$

where X_0 is independent of (B_t) and $X_0 \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = -1$ and $\sigma^2 = 9$.

- (a) (1 marks) Calculate $\mathbb{E}(X_t)$ for any $t \ge 0$.
- (b) (4 marks) Calculate $Var(X_t)$ for any $t \ge 0$.
- 2. Let us define $Y_t = \int_0^t (t^2 s^2) dB_s$ for any $t \ge 0$.
 - (a) (3 marks) Show that (Y_t) is an *Itô process* by rewriting it in the form $Y_t = Y_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dB_s$.
 - (b) (2 marks) Calculate the quadratic variation $[Y]_t$.
- 3. (5 marks) Find a non-negative process (Z_t) satisfying

$$\mathrm{d}Z_t = Z_t \mathrm{d}B_t + Z_t \mathrm{d}t, \qquad Z_0 = 2.$$

Hint: First calculate the stochastic differential of $\log(Z_t)$ using Itô's formula for Itô processes.