Family name \qquad

Given name

\qquad

Signature \qquad Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. (5 marks) Find the covariance of $\int_{0}^{2}\left(2 B_{s}-1\right) \mathrm{d} B_{s}$ and $\int_{0}^{3}\left(B_{s}^{2}+1\right) \mathrm{d} B_{s}$.
2. (a) (3 marks) Use Itō calculus to show that

$$
M_{2}(t)=B_{t}^{2}-t, \quad M_{4}(t)=B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}
$$

are martingales. Hint: First calculate the stochastic differential of $\left(M_{2}(t)\right)$ and $\left(M_{4}(t)\right)$.
(b) (2 marks) Find the adapted process $\left(\sigma_{t}\right)_{0 \leq t \leq 1}$ for which $B_{1}^{4}=\mathbb{E}\left[B_{1}^{4}\right]+\int_{0}^{1} \sigma_{t} \mathrm{~d} B_{t}$. Hint: First find the process $\left(\widetilde{\sigma}_{t}\right)_{0 \leq t \leq 1}$ for which $B_{1}^{2}=\mathbb{E}\left[B_{1}^{2}\right]+\int_{0}^{1} \widetilde{\sigma}_{t} \mathrm{~d} B_{t}$.
3. (5 marks) Find a non-negative process $\left(Z_{t}\right)$ satisfying

$$
\mathrm{d} Z_{t}=-Z_{t} \mathrm{~d} B_{t}+Z_{t} \mathrm{~d} t, \quad Z_{0}=3
$$

Hint: First calculate the stochastic differential of $\log \left(Z_{t}\right)$ using Itô's formula for Itô processes.

