Midterm Exam - May 25, 2023, Stochastic Analysis
Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad
No calculators or electronic devices are allowed. One formula sheet with 15 formulas is OK.

1. (7 points) Let $\left(B_{t}\right)$ denote standard Brownian motion and $\left(\mathcal{F}_{t}\right)$ its natural filtration. Let

$$
X=\left(B_{4}\right)^{3} .
$$

(a) Calculate the conditional expectation $M_{t}:=\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)$ for all $0 \leq t \leq 4$.
(b) Find the adapted process $\left(\sigma_{t}\right)_{0 \leq t \leq 4}$ for which $X=\mathbb{E}[X]+\int_{0}^{4} \sigma_{s} \mathrm{~d} B_{s}$.
2. (8 points) Let us consider the Itô process that satisfies

$$
X_{t}=5+3 \int_{0}^{t} X_{s} \mathrm{~d} s+2 \int_{0}^{t} X_{s} \mathrm{~d} B_{s}, \quad t \geq 0
$$

(a) Find the value of $x \in \mathbb{R}$ for which $\mathbb{P}\left(X_{4} \leq x\right)=\frac{1}{2}$.
(b) Let $Y_{t}=\sqrt{X_{t}}$. Show that $\left(Y_{t}\right)$ is a time-homogeneous Itô diffusion process by writing down the drift coefficient $\mu: \mathbb{R} \rightarrow \mathbb{R}$ and the diffusion coefficient $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ for which $\mathrm{d} Y_{t}=\mu\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} B_{t}$.

