Midterm Exam - May 7, 2025, Stochastic Analysis

 Family name
 Given name

 Signature
 Neptun Code

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is OK.

1. Let (B_t) denote standard Brownian motion and (\mathcal{F}_t) its natural filtration. Let us fix $x_0 \in \mathbb{R}$. Let

$$X = \mathbb{1} [B_3 \le x_0] = \begin{cases} 1 & \text{if } B_3 \le x_0, \\ 0 & \text{if } B_3 > x_0. \end{cases}$$

- (a) (3 points) Calculate the conditional expectation $M_t := \mathbb{E}(X | \mathcal{F}_t)$ for all $0 \le t \le 3$. *Hint:* The answer will be of form $f(t, B_t)$ (if we hide the dependence of the answer on the parameter x_0 from our notation).
- (b) (2 points) Check that (M_t) is a martingale by calculating its stochastic differential.
- (c) (2 points) Find the adapted process $(\sigma_t)_{0 \le t \le 3}$ for which $X = \mathbb{E}[X] + \int_0^3 \sigma_s \, \mathrm{d}B_s$.
- 2. Let us consider the Itô process that satisfies

$$X_t = X_0 + 2B_t + \int_0^t (2 + 4s - 2X_s) \,\mathrm{d}s, \qquad t \ge 0,$$

where $X_0 \sim \mathcal{N}(0, 1)$ and X_0 is independent from the Brownian motion.

- (a) (1 point) Write down the differential form of the above integral equation (i.e., find the SDE that (X_t) satisfies).
- (b) (4 points) Find the strong solution of the SDE.
- (c) (3 points) Identify the distribution of X_t for each $t \ge 0$.