Second Midterm Exam - May 28, 2025, Stochastic Analysis

Let’s solve these stochastic analysis exercises.

Exercise 1: 4-dimensional Brownian motion

Let B, = (Bi(t), Ba(t), B3(t), B4(t)) denote 4-dimensional Brownian motion started from
By =1y € R, 2y # 0. Let Xy = (B1(1))* + (Ba(1)* + (Bs(1))* + (Ba(t))” = [ B,|I*.

Part (a): Find a € R\ {0} such that the drift term of M; := (X;)* vanishes.

First, let’s find the SDE for X;. Since B, is a 4-dimensional Brownian motion, each B;(t)
is a standard 1-dimensional Brownian motion, and they are independent. For each B;(t), we
have dB;(t) = 1-dB;(t) + 0 - dt. Let f(x1,z2, 73, 24) = 27 + x2 + x3 + 3. Using Itd’s Lemma
for multi-dimensional processes: dX, = S+ 2LdB;(t) + L Z 1 dt af = 2z; 24 = 2 So,

=1 dx; i=1 oz? Oz?
dX, =i, 2Bi(t)dB;(t) + & z;‘;l 2dt =2 Sioy Bi(t)dB;(t) + 4dt.
Now, let M; = (X;)®. Let g(x) = 2. Using Ito s Lemma: dM; = ¢/(X;)dX;+39" (X¢)(dX,)?

g () = az®! ¢"(z) = a(a — 1)z°? We know dX; = 221:13( )dB;(t) + 4dt. (dX;)? =

(2L, BihdBi(t)” = 4 L, (Bi(1)*(dBi(t))* = 41, (By(1)2dt = 4X,dt.

Substituting these into the It6’s Lemma for My: dM, = a X~ (2 S Bi(H)dBi(t) + 4dt)+
la(a—1)XP72(4Xdt) dM, = 2a X271 S0 Bi(t)dBy(t) +4a Xy dt+2a(a— 1) X7 dt dM; =
20X Bi(t)dBi(t) + [4a + 2a(a — 1)] X2~ 1dt The drift term is [4a + 2a(a — 1)] X2
We want the drift term to vanish, so we set it to zero: 4a + 2a(a — 1) = 0 Since a € R\ {0},
we can divide by a: 44+2(a—1)=04+2a—2 = 02a+2—02a——2a——1

Thus, for a = —1, the drift term of M; = (X;)~! vanishes.

Part (b): Probability of exiting B(rs) before entering B(ry).

We are given 0 < r; < ry € Ry such that z; is inside the ball B(ry) (i.e., ||z,|| < r2) and
outside of the ball B(ry) (i.e., ||z,]] > ). We want to find the probability that (B,) exits
B(r2) before it enters B(ry). This means we are looking for the probability that ||B,|| reaches
r9 before it reaches ry.

Let X, = ||B,||?>. From part (a), we know that M, = X, ' has a zero drift term. This
means M; is a local martingale. Let M; = X; ' = (||B,||>) ™ = ||B,||"% Let R; = ||B,||. Then
M, = R; .

The stopping times are: T} = inf{t > 0: || B,|| =} To = inf{t > 0: || B,|| = r2} We want
to find P(TQ < Tl)

Since the process M; is a local martingale and the process stopped at T is bounded, by
the Optional Stopping Theorem, for almost surely finite stopping times 7', E[My] = My. Let
T = min(T},Ty). Since R, starts between r; and ry, X; starts between rf and r3. The process
X; will eventually hit either 72 or 73. So T is a finite stopping time. Also, M; is bounded on
the interval [r? r2], so My is bounded. Therefore, E[My] = M.

Let p= P(Ty < T}). Then P(Ty < Ty) =1—p. If Ty < Ty, then Xy =r3. If T} < Ty, then
XT = ’l“%.

E[Mr] = E[Mr|Ty < T1|P(Ty < Ty)+ E[Mp|Ty < To]P(T) < Ty) My = (||z,]])) 2 E[Mr] =
(r3) "'+ (1))~ (1=p) So, lzol 2 = ry*p+r*(1=p). Let 2o = ||zl 20 =ry*p+r" =1 °p
=1t = plry® %) p =Tk

This is the probability that (ﬁ ) exits B(ry) before it enters B(ry).

Exercise 2: It6 Diffusion Process

Let yo € Ry. Y, =yo + f; 4Y, dB, — fot Y, du. We also know that E(Y,) =
Part (a): What is y,?




The SDE for Y, is dY; = 4Y,dB; — Y,dt. This is a geometric Brownian motion type SDE.
Consider dY; = oY,dB; + pY,dt. In our case, 0 = 4 and y = —1. The solution to such
an SDE is given by Y; = Yyexp ((u— 30%)t +0B;). So, Y; = yoexp ((—1 — 5(4)*)t + 4B,)
Y =yoexp ((—1 = 5(16))t +4B;) V; = yoexp ((—1 — 8)t +4B;) Y; = yoexp (=9t + 4B,).

Now we need to find E(Y2). E(Y2) = E [y exp (—9(2) + 4B2)] E(Y2) = yo exp(—18)E [exp(4By)].

We know that for a standard normal random variable Z ~ N(0,1), E[e*?] = e2**. Here
By is a normal random variable with mean 0 and variance 2. So By ~ N(0,2). We can
write By = /27 where Z ~ N(0,1). So, E[exp(4B,)] = E [exp(4v/2Z)]. Here A\ = 4V/2.
E [exp(4v2Z)] = exp (3(4v/2)?) = exp (1(16 - 2)) = exp (3(32)) = exp(16).

Therefore, E(Y3) = yoexp(—18) exp(16) = ypexp(—2). We are given that E(Y3) = e. So,
yoexp(—2) = e. yoe 2 =el. yo = ele? = €*. Thus, yy = €.

Part (b): Show that Z; := (¥;)? is a time-homogeneous It6 diffusion process by finding the
functions p: R - R and 0 : R — R.

Let Z; = (V;)3. Let f(y) = y>. We use Itd’s Lemma. f'(y) = 3y? f”(y) = 6y From the SDE
for Yy, we have dY; = 4Y,dB; — Y,dt. So, oy (Y;) = 4Y; and py (Y;) = —Y;. 1t6’s Lemma states:
dZ, = f'(Y)dY, + £ f"(Y;)(dY;)?. Substitute dY;: dZ, = 3Y?(4Y,dB, — Y,dt) + 5(6Y;)(4Y,dB, —
Y;dt)?. First, calculate (dY;)*: (dY;)? = (4Y;dB; —Yydt)? = (4Y;dB;)?* = 16Y,2(dB;)* = 16Y2dt.

Now substitute back into the Itd’s Lemma equation for dZ;: dZ; = 12Y3dB; — 3Y2dt +
2(6Y})(16Y2dt) dZ, = 12Y2dB, — 3Y2dt + 48Y2dt dZ, = 12YdB, + (48Y® — 3Y?)dt dZ, =
12Y2dB; + 45Y2dt.

We want to express Z; in the form dZ; = o(Z;)dB; + u(Z;)dt. Since Z; = Y;?, we can
substitute Y;? with Z;: dZ; = 12Z,dB; + 45Z,dt.

So, we have: o(Z;) = 127, u(Z,) = 457,

The functions u(z) = 45z and o(z) = 12z depend only on Z; and not explicitly on time ¢.
Therefore, Z; is a time-homogeneous It6 diffusion process. In particular, 7, is also a geometric
Brownian motion.



