Midterm Exam (second midterm) - December 14, 2018, Stochastic Analysis

Family name \qquad Given name \qquad

Signature \qquad Neptun Code \qquad

No calculators or electronic devices are allowed. One formula sheet with 15 formulas is allowed.

1. Let $\left(B_{t}\right)$ denote the standard Brownian motion. Let us define the process $\left(X_{t}\right)$ by

$$
\mathrm{d} X_{t}=2 \cdot \mathrm{~d} B_{t}-\mathrm{d} t, \quad X_{0}=1
$$

Given some $\alpha, \beta \in \mathbb{R}$, let us define

$$
Y_{t}:=\exp \left(\beta X_{t}-\alpha t\right)
$$

(a) (3 marks) Calculate the stochastic differential $\mathrm{d} Y_{t}$.
(b) (2 marks) Given $\alpha \in \mathbb{R}$ how should we choose $\beta \in \mathbb{R}$ if we want $\left(Y_{t}\right)$ to be a martingale? Warning: Maybe there is no such value of β or maybe there are multiple such values of β, depending on the value of α.
(c) (2 marks) Let $\tau=\min \left\{t: X_{t}=0\right\}$ the hitting time of level 0. Apply the optional stopping theorem to calculate $\mathbb{E}\left(e^{-\tau}\right)$.
Hint: You may assume without proof that $\mathbb{P}(\tau<+\infty)=1$. You can use the following continuoustime form of the optional stopping theorem: if $\left(M_{t}\right)$ is a martingale, τ is a stopping time satisfying $\mathbb{P}(\tau<+\infty)=1$ and if there exists a constant $C \in \mathbb{R}_{+}$such that $\mathbb{P}\left(\left|M_{t \wedge \tau}\right| \leq C\right)=1$ for any $t \geq 0$ then we have $\mathbb{E}\left(M_{\tau}\right)=\mathbb{E}\left(M_{0}\right)$.
2. Let us define

$$
Y_{t}=2 e^{-8 t}+4 \int_{0}^{t} e^{8(s-t)} \mathrm{d} B_{s}
$$

(a) (4 marks) Calculate the stochastic differential of Y_{t} and show that $\left(Y_{t}\right)$ is an Itô process by explicitly writing down the formula of the processes $\left(\mu_{t}\right)$ and $\left(\sigma_{t}\right)$ for which

$$
Y_{t}=Y_{0}+\int_{0}^{t} \mu_{u} \mathrm{~d} u+\int_{0}^{t} \sigma_{u} \mathrm{~d} B_{u} .
$$

More specifically, find the functions $\widetilde{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ and $\widetilde{\sigma}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mu_{u}=\widetilde{\mu}\left(Y_{u}\right)$ and $\sigma_{u}=\widetilde{\sigma}\left(Y_{u}\right)$ in the above formula.
(b) (1 mark) Calculate the quadratic variation $[Y]_{t}$ on the interval $[0, t]$.
(c) (3 marks) Find the distribution of Y_{2}.

