Midterm Exam - May 25, 2023, Stochastic Analysis

1. Let $\left(B_{t}\right)$ denote standard Brownian motion and $\left(\mathcal{F}_{t}\right)$ its natural filtration. Let $X:=\left(B_{4}\right)^{3}$.
(a) Calculate the conditional expectation $M_{t}:=\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)$ for all $0 \leq t \leq 4$.
(b) Find the adapted process $\left(\sigma_{t}\right)_{0 \leq t \leq 4}$ for which $X=\mathbb{E}[X]+\int_{0}^{4} \sigma_{s} \mathrm{~d} B_{s}$.

Solution:

(a) Let us fix $0 \leq t \leq 4$. Let $Y:=B_{4}-B_{t}$.

$$
\begin{aligned}
& M_{t}=\mathbb{E}\left(\left(B_{4}\right)^{3} \mid \mathcal{F}_{t}\right)=\mathbb{E}\left(\left(B_{t}+Y\right)^{3} \mid \mathcal{F}_{t}\right)= \\
& \mathbb{E}\left(B_{t}^{3} \mid \mathcal{F}_{t}\right)+3 \mathbb{E}\left(B_{t}^{2} Y \mid \mathcal{F}_{t}\right)+3 \mathbb{E}\left(B_{t} Y^{2} \mid \mathcal{F}_{t}\right)+\mathbb{E}\left(Y^{3} \mid \mathcal{F}_{t}\right)=B_{t}^{3}+B_{t}^{2} \cdot 0+3 B_{t}(4-t)+0= \\
& B_{t}^{3}+3 B_{t}(4-t)
\end{aligned}
$$

(b) $\left(M_{t}\right)_{0 \leq t \leq 4}$ is a martingale, $M_{0}=\mathbb{E}[X]=0, M_{4}=X$. Let us write M_{t} as an Ito $\overline{\text { integral. }}$

$$
\mathrm{d} M_{t}=3 B_{t}^{2} \mathrm{~d} B_{t}+\frac{1}{2} 6 B_{t} \mathrm{~d} t+3 B_{t}(-1) \mathrm{d} t+3(4-t) \mathrm{d} B_{t}=\left(3 B_{t}^{2}+12-3 t\right) \mathrm{d} B_{t}
$$

Integrating this we obtain $M_{4}-M_{0}=\int_{0}^{4}\left(3 B_{t}^{2}+12-3 t\right) \mathrm{d} B_{t}$, thus $\sigma_{t}=3 B_{t}^{2}+12-3 t$.
2. Let us consider the Itô process that satisfies

$$
\begin{equation*}
X_{t}=5+3 \int_{0}^{t} X_{s} \mathrm{~d} s+2 \int_{0}^{t} X_{s} \mathrm{~d} B_{s}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

(a) Find the value of $x \in \mathbb{R}$ for which $\mathbb{P}\left(X_{4} \leq x\right)=\frac{1}{2}$.
(b) Let $Y_{t}=\sqrt{X_{t}}$. Show that $\left(Y_{t}\right)$ is a time-homogeneous Itô diffusion process by writing down the drift coefficient $\mu: \mathbb{R} \rightarrow \mathbb{R}$ and the diffusion coefficient $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ for which $\mathrm{d} Y_{t}=\mu\left(Y_{t}\right) \mathrm{d} t+\sigma\left(Y_{t}\right) \mathrm{d} B_{t}$.

Solution: Taking the stochastic differential of both sides of (1), we obtain

$$
\begin{equation*}
\mathrm{d} X_{t}=3 X_{t} \mathrm{~d} t+2 X_{t} \mathrm{~d} B_{t}, \quad X_{0}=5 \tag{2}
\end{equation*}
$$

This is the SDE of a geometric Brownian motion with parameters $r=3$ and $\sigma=2$,
(a) thus we know from class that

$$
X_{t}=5 \exp \left(2 B_{t}+\left(3-\frac{1}{2} 2^{2}\right) t\right)=5 \exp \left(2 B_{t}+t\right), \quad \text { in particular } \quad X_{4}=5 \exp \left(2 B_{4}+4\right)
$$

We have $\mathbb{P}\left(B_{4} \leq 0\right)=\frac{1}{2}$, thus if $x=5 \cdot e^{4}$ then $\mathbb{P}\left(X_{4} \leq x\right)=\frac{1}{2}$.
(b) Let us take the stochastic differential of Y_{t} :

$$
\begin{aligned}
\mathrm{d} Y_{t}=\mathrm{d}\left(X_{t}\right)^{1 / 2}= & \frac{1}{2}\left(X_{t}\right)^{-1 / 2} \mathrm{~d} X_{t}+\frac{1}{2} \cdot \frac{1}{2} \cdot\left(-\frac{1}{2}\right) \cdot\left(X_{t}\right)^{-3 / 2} \mathrm{~d}\left[X_{t}\right] \stackrel{(2)}{=} \\
& \frac{1}{2}\left(X_{t}\right)^{-1 / 2}\left(3 X_{t} \mathrm{~d} t+2 X_{t} \mathrm{~d} B_{t}\right)-\frac{1}{8} \cdot\left(X_{t}\right)^{-3 / 2}\left(4 X_{t}^{2}\right) \mathrm{d} t=Y_{t} \mathrm{~d} B_{t}+Y_{t} \mathrm{~d} t
\end{aligned}
$$

Thus $\sigma(x)=x, \mu(x)=x$, thus Y_{t} is also a geometric Brownian motion (with parameters $\sigma=r=1$).

