Stoch. Anal. Exam, 18.12.2014

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written A4-sized formula sheet is allowed. You have 110 minutes to complete this exam.

1. Let $\left(B_{t}\right)$ denote standard Brownian motion.
(a) Find the cumulative distribution function of

$$
X=\min _{0 \leq t \leq 3} B_{t}
$$

i.e., calculate $\mathbb{P}(X \leq x)$ for all $x \in \mathbb{R}$. Please express your answer using the cumulative distribution function $\Phi(\cdot)$ of the standard normal random variable. Please explain how you used the reflection principle in your calculation by drawing a picture where the relevant quantities and random variables are clearly indicated.
(b) Calculate the probability density function of $\tau=\min \left\{t: B_{t}=-3\right\}$.
2. (a) Given a stochastic process $\left(Y_{t}\right)$ define the notion of the total variation of $\left(Y_{t}\right)$ on $[0, T]$.
(b) Given a stochastic process $\left(Y_{t}\right)$ define the notion of the quadratic variation of $\left(Y_{t}\right)$ on $[0, T]$.
(c) State and prove the result about the quadratic variation of a process $\left(Y_{t}\right)_{0 \leq t \leq T}$ which has continuous trajectories and finite total variation on $[0, T]$.
(d) State and prove the result about the characterization of the process $Y_{t}=\int_{0}^{t} X_{s} \mathrm{~d} B_{s}$ which has finite total variation. Carefully state the theorems that you use in the proof.
(e) Define the notion of an Ito process $\left(Y_{t}\right)$. This definition involves a decomposition of form

$$
Y_{t}=A_{t}+M_{t}
$$

Prove that this decomposition is uniquely determined by the process $\left(Y_{t}\right)$.
3. Given two independent Brownian motions $\left(B_{1}(t)\right)$ and $\left(B_{2}(t)\right)$ construct a third Brownian motion $\left(B_{3}(t)\right)$ such that the mutual variation $\left[B_{1}, B_{3}\right]_{t}$ is equal to $\sin (t)$ for all $t \geq 0$. Carefully state the theorems that you use to show that $\left(B_{3}(t)\right)$ is indeed a Brownian motion and that $\left[B_{1}, B_{3}\right]_{t}$ is indeed equal to $\sin (t)$.
4. Let $\left(\underline{B}_{t}\right)=\left(B_{1}(t), \ldots, B_{4}(t)\right)$ denote the 4-dimensional Brownian motion started from $\underline{x}_{0} \neq \underline{0}$. Let

$$
X_{t}=\left\|\underline{B}_{t}\right\|^{-2}=\frac{1}{B_{1}^{2}(t)+\cdots+B_{4}^{2}(t)} .
$$

(a) Calculate the stochastic differential $\mathrm{d} X_{t}$.
(b) Prove that $X_{t \wedge \tau}$ is a martingale where $\tau=\min \left\{t:\left\|\underline{B}_{t}\right\|=\varepsilon\right\}$ and $0<\varepsilon<\left\|\underline{x}_{0}\right\|$.
(c) Prove that X_{t} is not a martingale.

