Stoch. Anal. Exam, December 20, 2016

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 100 minutes to complete this exam.

1. Recall the stochastic process $B^{(N)}(t), 0 \leq t \leq 1$ from Paul Lévy's construction of Brownian motion:

$$
B^{(N)}(t)=t X+\sum_{n=0}^{N-1} \sum_{k=1}^{2^{n}} a_{n} f_{k}^{n}(t) Y_{k}^{n}
$$

where X and $Y_{k}^{n}, 0 \leq n, 1 \leq k \leq 2^{n}$ are independent standard normal random variables.
(a) Draw a picture of $f_{1}^{0}(t), f_{1}^{1}(t), f_{2}^{1}(t)$ and the general $f_{k}^{n}(t)$, where $0 \leq n$ and $1 \leq k \leq 2^{n}$.
(b) Draw a picture of $B^{(2)}(t)$ and show on the same picture how we obtain $B^{(3)}(t)$ from $B^{(2)}(t)$.
(c) Prove by induction on N that we can choose $a_{1}, a_{2}, \cdots \in \mathbb{R}_{+}$such that for each $N \geq 0$ the increments

$$
B^{(N)}\left(\frac{1}{2^{N}}\right)-B^{(N)}\left(\frac{0}{2^{N}}\right), \quad B^{(N)}\left(\frac{2}{2^{N}}\right)-B^{(N)}\left(\frac{1}{2^{N}}\right), \quad \ldots, \quad B^{(N)}\left(\frac{2^{N}}{2^{N}}\right)-B^{(N)}\left(\frac{2^{N}-1}{2^{N}}\right)
$$

are i.i.d. with distribution $\mathcal{N}\left(0, \frac{1}{2^{N}}\right)$. Derive the explicit formula for $a_{N}, N \geq 0$ and explain which properties of multivariate normal distribution you used in your proof.
2. We say that two stochastic processes $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law if for every choice of $n \geq 1$ and $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the joint distributions of $\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right)$ and $\left(Y\left(t_{1}\right), Y\left(t_{2}\right), \ldots, Y\left(t_{n}\right)\right)$ are the same. Denote by $(B(t))$ the standard Brownian motion.

Given $\beta \in\left(-\frac{1}{2},+\infty\right)$, find $\alpha \in \mathbb{R}_{+}$and $c>0$ so that $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law, where

$$
X(t)=B\left(c \cdot t^{\alpha}\right), \quad Y(t)=\int_{0}^{t} s^{\beta} \mathrm{d} B(s) .
$$

Briefly explain why $(X(t))_{t \geq 0}$ and $(Y(t))_{t \geq 0}$ have the same law using results seen in class.
3. For every $n \in \mathbb{N}$, let $\Delta_{n}=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ denote a partition of the interval [$0, t$], in other words, let $0=t_{0}<t_{1}<\cdots<t_{n}=t$. Denote by $\left|\Delta_{n}\right|=\max _{1 \leq k \leq n}\left(t_{k}-t_{k-1}\right)$. We assume that $\lim _{n \rightarrow \infty}\left|\Delta_{n}\right|=0$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ denote a bounded and continuous function. Let $\left(B_{t}\right)$ denote standard Brownian motion. Let us define

$$
\mathcal{B}_{n}=\sum_{k=1}^{n} g\left(B_{t_{k-1}}\right) \cdot\left(B_{t_{k}}-B_{t_{k-1}}\right)^{2} .
$$

Prove that \mathcal{B}_{n} converges in probability to $\int_{0}^{t} g\left(B_{s}\right) \mathrm{d} s$ as $n \rightarrow \infty$. Explain where you used the definition of Riemann integral, the Pythagorean theorem for square integrable martingales and Chebyshev's inequality in your proof.
4. Let $d \in \mathbb{R}_{+}, d \neq 2$. Let $\left(Y_{t}\right)$ be a d-dimensional Bessel process, i.e., the solution of the SDE

$$
\mathrm{d} Y_{t}=\frac{d-1}{2} \frac{\mathrm{~d} t}{Y_{t}}+\mathrm{d} B_{t}, \quad Y_{0}=y_{0} \in \mathbb{R}_{+}
$$

(a) Find an $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(Y_{t}\right)$ is a (local) martingale, i.e. the drift term of $\mathrm{d} f\left(Y_{t}\right)$ vanishes.
(b) Use the optional stopping theorem to calculate $\mathbb{P}\left(T_{a}<T_{b}\right)$ where

$$
0<a \leq y_{0} \leq b, \quad T_{a}=\min \left\{t: Y_{t}=a\right\}, \quad T_{b}=\min \left\{t: Y_{t}=b\right\}
$$

(c) Find $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $g\left(Y_{t}\right)-t$ is a (local) martingale and calculate $\mathbb{E}(\tau)$, where $\tau=T_{a} \wedge T_{b}$.

