Stoch. Anal. Exam, December 18, 2018

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 90 minutes to complete this exam.

1. Let $\left(B_{t}\right)$ denote standard Brownian motion. Given $x \geq 0$ and $t \geq 0$ let us define

$$
M_{t}:=\max _{0 \leq s \leq t} B_{s}, \quad T_{x}=\min \left\{t: B_{t}=x\right\} .
$$

(a) (8 marks) Use the reflection principle to derive a formula for the cumulative distribution function of M_{t} for some fixed $t>0$. Please draw a picture explaining how you used the reflection principle.
(b) (4.5 marks) Calculate the probability density function of T_{x} for some fixed $x>0$.
2. We approximate the stochastic integral $\mathcal{Z}=\int_{0}^{1}(B(t)-1) \mathrm{d} B(t)$ with the sum

$$
\mathcal{Z}_{n}=\sum_{k=1}^{n}\left(B\left(\frac{k-1}{n}\right)-1\right) \cdot\left(B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right) .
$$

(a) (3 marks) Write down the simple predictable function $\left(X_{n}(t)\right), 0 \leq t \leq 1$ for which

$$
\mathcal{Z}_{n}=\int_{0}^{1} X_{n}(t) \mathrm{d} B(t)
$$

(b) (9.5 marks) What is the smallest value of n for which $\mathbb{E}\left[\left(\mathcal{Z}-\mathcal{Z}_{n}\right)^{2}\right] \leq 10^{-3}$ holds?
3. (12.5 marks) Paul Lévy's characterization of Brownian motion states that if $\left(M_{t}\right)$ is a continuous martingale with $M_{0}=0$ and its quadratic variation satisfies $[M]_{t}=t$ for all $t \geq 0$, then $\left(M_{t}\right)$ is actually a standard Brownian motion. Prove Paul Lévy's characterization of Brownian motion.
Instruction: In your argument you can use without proof that if \mathcal{F} is a sigma-algebra and X is a random variable and

$$
\mathbb{E}\left(e^{i u X} \mid \mathcal{F}\right)=e^{-\frac{1}{2} u^{2} \sigma^{2}} \quad \text { for every } \quad u \in \mathbb{R}
$$

(where i denotes the complex imaginary unit) then X is independent from \mathcal{F} and X has $\mathcal{N}\left(0, \sigma^{2}\right)$ distribution. When you prove Paul Lévy's characterization of Brownian motion, you may also use the simplifying assumption that the stochastic process $\left(M_{t}\right)$ is an Ito process driven by multivariate Brownian motion.
Hint: First show that for any $u \in \mathbb{R}$, the process $\left(Z_{t}\right)$ defined by $Z_{t}=\exp \left(i u M_{t}+\frac{1}{2} u^{2} t\right)$ is a martingale.
4. Let us consider the two dimensional Bessel process $\left(X_{t}\right)$, i.e., the solution of the SDE

$$
\mathrm{d} X_{t}=\frac{1}{2} \frac{1}{X_{t}} \mathrm{~d} t+\mathrm{d} B_{t}, \quad X_{0}=x_{0}>0
$$

(a) (8.5 marks) Find a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that the process $\left(f\left(X_{t}\right)\right)$ has zero drift. Hint: Calculate the stochastic differential $\mathrm{d} f\left(X_{t}\right)$ and then solve the resulting ODE for f.
(b) (4 marks) Let $T_{x}=\min \left\{t: X_{t}=x\right\}$. Let $0<a<x_{0}<b<\infty$. Calculate $\mathbb{P}\left(T_{a}<T_{b}\right)$. Hint: Use the optional stopping theorem.

