Stoch. Anal. Exam, June 15, 2023

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 90 minutes to complete this exam.

- 1. (a) (4 points) Define the mutual variation of two stochastic processes.
 - (b) (4 points) State and prove the result about the mutual variation of a continuous function and a function with finite total variation.
 - (c) (4.5 points) State the formula about the mutual variation of two Itō processes driven by the same *d*-dimensional Brownian motion and give a heuristic proof using stochastic differentials.
- 2. (a) (6.5 points) Let $f : \mathbb{R}_+ \to \mathbb{R}$ and $g : \mathbb{R}_+ \to \mathbb{R}$ denote deterministic continuous functions. Let

$$M_t = \exp\left(i\int_0^t f(s)\,\mathrm{d}B_s + g(t)\right).$$

Given f how to choose g if we want (M_t) to be a martingale satisfying $M_0 = 1$?

(b) (6 points) Let $X = \exp\left(i\int_0^T f(s) \,\mathrm{d}B_s\right)$. Find $\mathbb{E}(X)$ and the adapted process $(\sigma(t))_{t=0}^T$ for which

$$X = \mathbb{E}(X) + \int_0^T \sigma(t) \, \mathrm{d}B_t$$

3. Let (X_t) and (Y_t) denote Itō processes satisfying $\mathbb{E}\left(\int_0^T X_s^2 \, \mathrm{d}s\right) < +\infty$ and $\mathbb{E}\left(\int_0^T Y_s^2 \, \mathrm{d}s\right) < +\infty$ and

$$X_{t} = x_{0} + \int_{0}^{t} \mu(X_{s}) \,\mathrm{d}s + \int_{0}^{t} \sigma(X_{s}) \,\mathrm{d}B_{s}, \qquad 0 \le t \le T,$$
(1)

$$Y_t = y_0 + \int_0^t \mu(Y_s) \, \mathrm{d}s + \int_0^t \sigma(Y_s) \, \mathrm{d}B_s, \qquad 0 \le t \le T.$$
(2)

Let us assume that $|\mu(x) - \mu(y)| \leq K \cdot |x - y|$ and $|\sigma(x) - \sigma(y)| \leq K \cdot |x - y|$ for all $x, y \in \mathbb{R}$. Let us define $\Psi_t := \mathbb{E}[(X_t - Y_t)^2]$ for all $0 \leq t \leq T$.

- (a) (3 points) Show that $\mathbb{E}\left[\left(\int_0^t (\mu(X_s) \mu(Y_s)) \,\mathrm{d}s\right)^2\right] \le K^2 T \int_0^t \Psi_s \,\mathrm{d}s, \ 0 \le t \le T.$ (b) (3 points) Show that $\mathbb{E}\left[\left(\int_0^t (\sigma(X_s) - \sigma(Y_s)) \,\mathrm{d}B_s\right)^2\right] \le K^2 \int_0^t \Psi_s \,\mathrm{d}s, \ 0 \le t \le T.$
- (c) (3 points) State (but do not prove) Grönwall's inequality.
- (d) (3.5 points) Show that $\mathbb{E}[(X_t Y_t)^2] \le 9(x_0 y_0)^2 \exp(9K^2(T+1)t)$ holds for all $0 \le t \le T$.
- 4. Poisson's equation with Dirichlet boundary condition. Given a compact domain $\mathcal{D} \subseteq \mathbb{R}^d$ with a smooth boundary $\partial \mathcal{D}$, moreover $g : \mathcal{D} \to \mathbb{R}$ and $f : \partial \mathcal{D} \to \mathbb{R}$ (both bounded and continuous), we say that the function $u : \mathcal{D} \to \mathbb{R}$ is the solution of Poisson's equation with Dirichlet boundary condition if $\frac{1}{2}\Delta u(\underline{x}) = g(\underline{x})$ for all $\underline{x} \in \mathcal{D}^o$ (the interior of \mathcal{D}) and $u(\underline{x}) = f(\underline{x})$ for all $\underline{x} \in \partial \mathcal{D}$. Apply the optional stopping theorem (OST) to an appropriately chosen martingale to show that the solution u has the following probabilistic representation:

$$u(\underline{x}) = \mathbb{E}\left(\left.f(\underline{B}_{\tau}) - \int_{0}^{\tau} g(\underline{B}_{s}) \,\mathrm{d}s \,\right| \underline{B}_{0} = \underline{x}\right), \qquad \underline{x} \in \mathcal{D},$$

where (\underline{B}_t) is a *d*-dim. Brownian motion and $\tau = \min\{t : \underline{B}_t \in \partial \mathcal{D}\}$ is the exit time of (\underline{B}_t) from \mathcal{D}^o . Instruction: You do not have to check the conditions of the OST, just use it.