Stoch. Anal. Exam, 06.01.2015

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written A4-sized formula sheet is allowed. You have 110 minutes to complete this exam.

1. The aim of this exercise is to prove that if the stochastic process $\left(X_{t}\right)_{0 \leq t \leq T}$ is left-continuous, adapted and $\mathbb{E}\left(\int_{0}^{T} X_{t}^{2} \mathrm{~d} t\right)<+\infty$, and if $Y_{t}=\int_{0}^{t} X_{s} \mathrm{~d} B_{s}, 0 \leq t \leq T$, then
(a) $\left(Y_{t}\right)_{0 \leq t \leq T}$ is continuous and
(b) $\left(Y_{t}\right)_{0 \leq t \leq T}$ is a martingale.

In your solution you can use the following facts without proving them, however you are asked to clearly indicate where you used them:
(i) If $\left(\widetilde{X}_{t}\right)_{0 \leq t \leq T}$ is a simple predictable process and $\mathbb{E}\left(\int_{0}^{T} \widetilde{X}_{t}^{2} \mathrm{~d} t\right)<+\infty$, and if $\widetilde{Y}_{t}=\int_{0}^{t} \widetilde{X}_{s} \mathrm{~d} B_{s}$, $0 \leq t \leq T$, then $\left(\widetilde{Y}_{t}\right)_{0 \leq t \leq T}$ is a continuous martingale.
(ii) If $\left(X_{t}\right)_{0 \leq t \leq T}$ is left-continuous, adapted and $\mathbb{E}\left(\int_{0}^{T} X_{t}^{2} \mathrm{~d} t\right)<+\infty$ then for every $\varepsilon>0$ there exists a simple predictable process $\left(\tilde{X}_{t}\right)_{0 \leq t \leq T}$ such that $\mathbb{E}\left(\int_{0}^{T}\left(X_{t}-\widetilde{X}_{t}\right)^{2} \mathrm{~d} t\right)<\varepsilon$.
(iii) Itō isometry; submartingale inequality and its corollaries; the uniform limit of continuous functions is a continuous function; Borel-Cantelli lemma; Jensen's inequality for conditional expectations.
2. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of $\left(S_{n}\right)$, i.e., $\mathcal{F}_{n}=\sigma\left(S_{1}, \ldots, S_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$.
(a) Show that any martingale $\left(M_{n}\right)$ with $M_{0}=0$ adapted to $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is a discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}.
(b) Show that if X is an \mathcal{F}_{100}-measurable random variable then

$$
X=\mathbb{E}[X]+\sum_{k=1}^{100} Y_{k} \cdot\left(S_{k}-S_{k-1}\right)
$$

for some random variables Y_{1}, \ldots, Y_{100}, where Y_{k} is \mathcal{F}_{k-1}-measurable, $k=1, \ldots, 100$.
3. If $\underline{x}=(x, y) \in \mathbb{R}^{2}$, denote by $\|\underline{x}\|=\sqrt{x^{2}+y^{2}}$ the Euclidean norm of \underline{x}.

The aim of this exercise is to show that if $\underline{B}_{t}=\left(B_{1}(t), B_{2}(t)\right)$ is a 2-dimensional Brownian motion starting from $\underline{x}_{0} \neq \underline{0}$ and if $T_{x}=\inf \left\{t:\left\|\underline{B}_{t}\right\|=x\right\}$ then $\mathbb{P}\left(T_{0}=+\infty\right)=1$, i.e., \underline{B}_{t} never hits the origin $\underline{0}$.
(a) Calculate the stochastic differential $\mathrm{d} M_{t}$ of

$$
M_{t}=\ln \left(\left\|\underline{B}_{t}\right\|\right) .
$$

(b) Use the optional stopping theorem to calculate $\mathbb{P}\left[T_{a}<T_{b}\right]$ for any $0<a<\left\|\underline{x}_{0}\right\|<b<+\infty$.
(c) Show that $\mathbb{P}\left(T_{0}=+\infty\right)=1$. How did you use the continuity of $\left(\underline{B}_{t}\right)$?
4. Find the explicit solution of the stochastic differential equation

$$
\mathrm{d} X_{t}=\alpha X_{t} \mathrm{~d} t+\beta X_{t} \mathrm{~d} B_{t}, \quad X_{0}=\gamma, \quad \alpha, \beta, \gamma \in \mathbb{R}_{+}
$$

