Stoch. Anal. Exam, January 3, 2017

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 100 minutes to complete this exam.

1. (a) Define the notion of a simple predictable process $\left(X_{t}\right)$.
(b) Define $\int_{0}^{T} X_{t} \mathrm{~d} B_{t}$ for a simple predictable process $\left(X_{t}\right)$.
(c) Prove that $\mathbb{E}\left[\int_{0}^{T} X_{t} \mathrm{~d} B_{t}\right]=0$ if $\left(X_{t}\right)$ is a simple predictable process.
(d) State and prove the Itô isometry for the simple predictable process $\left(X_{t}\right)$.

Instruction: You are allowed to use the Pythagorean theorem for square integrable martingales without proving it.
2. Let us define

$$
p_{n}(t, x):=\left.\frac{\mathrm{d}^{n}}{\mathrm{~d} \lambda^{n}} \exp \left(\lambda x-\frac{\lambda^{2}}{2} t\right)\right|_{\lambda=0}, \quad n=0,1,2, \ldots
$$

(a) We say that the function $u(t, x)$ is a solution of the reverse heat equation if

$$
\frac{\partial}{\partial t} u(t, x) \equiv-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} u(t, x)
$$

Show that for any value of the parameter $\lambda \in \mathbb{R}$, the function $\exp \left(\lambda x-\frac{\lambda^{2}}{2} t\right)$ solves the reverse heat equation and that the polynomials $p_{n}(t, x), n \in \mathbb{N}$ inherit this property.
(b) Show that for any $n \geq 0$ the process defined by $M_{n}(t):=p_{n}\left(t, B_{t}\right)$ is a martingale.
3. Let $\left(B_{1}(t), \ldots, B_{n}(t)\right)$ denote n-dimensional Brownian motion. Prove that $X_{t}=\sqrt{B_{1}^{2}(t)+\cdots+B_{n}^{2}(t)}$ is a weak solution of the SDE

$$
\mathrm{d} X_{t}=\frac{n-1}{2} \frac{1}{X_{t}} \mathrm{~d} t+\mathrm{d} B_{t} .
$$

Instruction: You should also explain why this solution is weak and how you used Paul Lévy's characterisation of Brownian motion in your proof.
4. Let $\left(B_{t}\right)$ denote standard Brownian motion. Show that the following two processes have the same law:
(a) The solution $\left(Y_{t}\right)_{0 \leq t \leq 1}$ of the SDE $\mathrm{d} Y_{t}=\frac{-Y_{t}}{1-t} \mathrm{~d} t+\mathrm{d} B_{t}$ with $Y_{0}=0$.
(b) The process $\left(Z_{t}\right)_{0 \leq t \leq 1}$, where $Z_{t}=B_{t}-t B_{1}$.

