Stoch. Anal. Exam, January 8, 2019

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 90 minutes to complete this exam.

1. Let us consider the filtration $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n=0}^{\infty}$ and assume that \mathcal{F}_{0} is the trivial sigma-algebra.

Assume that the stochastic process $\left(X_{n}\right)_{n=1}^{\infty}$ is adapted to \mathbb{F} and that $\mathbb{E}\left(\left|X_{n}\right|\right)<+\infty$ for any $n=1,2, \ldots$
Prove that there exists a predictable process $\left(A_{n}\right)_{n=1}^{\infty}$ and a martingale $\left(M_{n}\right)_{n=1}^{\infty}$ satisfying $\mathbb{E}\left(M_{n}\right)=0$ such that $X_{n}=A_{n}+M_{n}$ for all $n=1,2, \ldots$ Prove that such a decomposition of $\left(X_{n}\right)_{n=1}^{\infty}$ is unique.
Hint: $M_{n}=\sum_{i=1}^{n}\left(X_{i}-\mathbb{E}\left(X_{i} \mid \mathcal{F}_{i-1}\right)\right)$ and $A_{n}=\mathbb{E}\left(X_{1}\right)+\sum_{i=2}^{n}\left(\mathbb{E}\left(X_{i} \mid \mathcal{F}_{i-1}\right)-X_{i-1}\right)$
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice continuously differentiable function and let us assume that $M:=$ $\max _{0 \leq s \leq t}\left|f^{\prime \prime}(s)\right|<+\infty$. Assume given a partition $\Delta=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of the interval $[0, t]$. Let $(B(t))$ denote standard Brownian motion. Let

$$
\mathcal{J}:=\frac{1}{2} \sum_{k=1}^{n} f^{\prime \prime}\left(B\left(t_{k-1}\right)\right)\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right)^{2}, \quad \mathcal{L}:=\frac{1}{2} \sum_{k=1}^{n} f^{\prime \prime}\left(B\left(t_{k-1}\right)\right)\left(t_{k}-t_{k-1}\right)
$$

Prove that $\mathbb{E}\left[(\mathcal{J}-\mathcal{L})^{2}\right] \leq \frac{M^{2}}{2} \sum_{k=1}^{n}\left(t_{k}-t_{k-1}\right)^{2}$.
Hint: Introduce an auxiliary discrete-time martingale N_{1}, \ldots, N_{n} and apply the Pythagorean theorem for matringales. Also good to know: if $Z \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and $X=Z^{2}$ then $\operatorname{Var}(X)=2 \sigma^{4}$.
3. Log-optimal portfolio. You are trading shares at the stock market. The value of one stock at time t is

$$
S_{t}=\sigma B_{t}+\mu t
$$

where $\left(B_{t}\right)$ is standard Brownian motion and $\mu>0$ (this is a toy example so let's not worry about the fact that S_{t} can become negative). At time t you hold C_{t} shares. It is OK to go in debt (i.e., it is OK if $C_{t}>Y_{t}$). Denote by $Y_{0}>0$ your initial wealth and by Y_{t} your total wealth at time t. Let us assume that you can't predict the future, so that $\left(C_{t}\right)$ is left-continuous and adapted to $\left(\mathcal{F}_{t}\right)$, where $\mathcal{F}_{t}=\sigma\left(S_{u}, 0 \leq u \leq t\right)$. Your net gain from trading shares at time t is

$$
Y_{t}-Y_{0}=\int_{0}^{t} C_{u} \mathrm{~d} S_{u}
$$

You trade in stocks until time T. Your goal is to maximize your expected rate of return $\mathbb{E}\left[\log \left(\frac{Y_{T}}{Y_{0}}\right)\right]$. What is the maximal expected rate of return achievable and the trading strategy that achieves it?
Hint: First calculate $\mathrm{d} \log \left(Y_{t}\right)$ and express the result using the notation $X_{t}:=C_{t} / Y_{t}$. Then you want to choose X_{t} in a way that the drift of $\mathrm{d} \log \left(Y_{t}\right)$ is maxized.
4. (a) (8 marks) Find the strong solution of the SDE

$$
\mathrm{d} X_{t}=-2 X_{t} \mathrm{~d} t+\mathrm{d} B_{t}, \quad X_{0}=1
$$

(b) (4.5 marks) What is the distribution of X_{1} ?

