Stoch. Anal. Exam, June 27, 2023

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 90 minutes to complete this exam.

1. Let $\left(B_{t}\right)$ denote a standard Brownian motion. Let $M_{1}:=\max _{0 \leq t \leq 1} B_{t}$.
(a) (4 points) Let $X_{t}:=B(1)-B(1-t)$ for any $0 \leq t \leq 1$. Show that $\left(X_{t}\right)_{0 \leq t \leq 1}$ is also a standard Brownian motion on the time interval $[0,1]$.
(b) (4.5 points) Use the reflection principle to show that M_{1} has the same distribution as $\left|B_{1}\right|$.
(c) (4 points) Show that M_{1} has the same distribution as $M_{1}-B_{1}$.
2. Martingale representation theorem for simple random walk. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of the simple random walk $\left(S_{n}\right)$, i.e., $\mathcal{F}_{n}=\sigma\left(S_{1}, \ldots, S_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$.
(a) (7 points) Show that any martingale $\left(M_{n}\right)$ with $M_{0}=0$ adapted to $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is a discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n}. Hint: Since M_{n} is $\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$-measurable, there exists a function $\varphi_{n}:\{-1,1\}^{n} \rightarrow \mathbb{R}$ such that $M_{n}=\varphi_{n}\left(\xi_{1}, \ldots, \xi_{n}\right)$. Please use this notation in your proof.
(b) (5.5 points) Show that if X is an \mathcal{F}_{100}-measurable random variable then

$$
X=\mathbb{E}[X]+\sum_{k=1}^{100} Y_{k} \cdot\left(S_{k}-S_{k-1}\right)
$$

for some random variables Y_{1}, \ldots, Y_{100}, where Y_{k} is \mathcal{F}_{k-1}-measurable, $k=1, \ldots, 100$.
3. Let $\left(\underline{B}_{t}\right)$ denote 7 -dimensional Brownian motion. Show that if $Z_{t}=\left\|\underline{B}_{t}\right\|$, then $\left(Z_{t}\right)$ is a weak solution of the SDE

$$
\mathrm{d} Z_{t}=\frac{3}{Z_{t}} \mathrm{~d} t+\mathrm{d} \widetilde{B}_{t}
$$

Instruction: Explain why the process $\left(\widetilde{B}_{t}\right)$ that appears in your solution is a Brownian motion. Instruction2: Explain briefly why $\left(Z_{t}\right)$ is a weak (i.e., not strong) solution of the above SDE.
4. Let us assume that the price of a stock at time t is S_{t}, where $\mathrm{d} S_{t}=m S_{t} \mathrm{~d} t+\sigma S_{t} \mathrm{~d} B_{t}$. Let us assume that the price of a bond at time t is R_{t}, where $\mathrm{d} R_{t}=r R_{t} \mathrm{~d} t$. Let us denote by $f(t, x)$ the fair price at time $t \in[0, T]$ of a European call option with strike price K and maturity date T under the assumption that $S_{t}=x$, where $t \in[0, T]$ and $x \in \mathbb{R}_{+}$. Use hedging to derive that

$$
\partial_{t} f(t, x)=r f(t, x)-r x \partial_{x} f(t, x)-\frac{\sigma^{2} x^{2}}{2} \partial_{x x}^{2} f(t, x), \quad f(T, x)=(x-K)_{+}
$$

Also describe the hedging strategy that you used to replicate the option.

