Stoch. Anal. Exam, January 15, 2019

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 90 minutes to complete this exam.

1. (a) (2 marks) Define the mutual variation $[X, Y]_{t}$ of the stochastic processes $\left(X_{t}\right)$ and $\left(Y_{t}\right)$.
(b) (3 marks) State and prove the polarization identity for mutual variations.

Instruction: You may use without proof the bilinearity of mutual variation.
(c) (4 marks) Show that if $\left(B_{t}\right)$ and $\left(B_{t}^{*}\right)$ are independent standard Brownian motions, then $\left(\widetilde{B}_{t}\right)$ is also a Brownian motion, where $\widetilde{B}_{t}=\frac{1}{\sqrt{2}}\left(B_{t}+B_{t}^{*}\right)$.
(d) (3.5 marks) Calculate the mutual variation $\left[B, B^{*}\right]_{t}$.

Instruction: You may use without proof that $[B]_{t}=t$.
2. Discrete Itô formula. We have learnt Itô's formula is class: $f\left(B_{t}\right)-f\left(B_{0}\right)=\int_{0}^{t} f^{\prime}\left(B_{s}\right) \mathrm{d} B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(B_{s}\right) \mathrm{d} s$. The goal of this exercise is to find the discrete analogue of this formula.
Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of the simple random walk $\left(S_{n}\right)$, i.e., $\mathcal{F}_{n}=\sigma\left(S_{1}, \ldots, S_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$.
Given some $f: \mathbb{Z} \rightarrow \mathbb{R}$ let us define $f^{*}(x):=\frac{f(x+1)-f(x-1)}{2}$ and $f^{* *}(x):=f(x+1)-2 f(x)+f(x-1)$.
(a) (6 marks) Let us define $X_{n}=f\left(S_{n}\right)-f\left(S_{0}\right)$. Find the discrete Doob-Meyer decomposition of the process $\left(X_{n}\right)$, i.e., write $X_{n}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Explicitly state the formula for A_{n} using the function $f^{* *}(\cdot)$.
(b) (6 marks) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n} using the function $f^{*}(\cdot)$.
(c) (0.5 mark) Put the results of (a) and (b) together to obtain a formula for $f\left(S_{n}\right)-f\left(S_{0}\right)$ that looks like the discrete version of the right-hand side of Itô's formula.
3. Let $\underline{B}_{t}=\left(B_{1}(t), B_{2}(t)\right)$ denote standard 2-dimensional Brownian motion.
(a) (6 marks) Find the constant α for which $M_{t}=B_{1}(t)^{2}-B_{1}(t) B_{2}(t)+4 B_{2}(t)^{2}-\alpha t$ is a martingale.
(b) (6.5 marks) We define the planar region $\mathcal{E}=\left\{(x, y): x^{2}-x y+4 y^{2} \leq 1\right\}$, which is an ellipse centered at the origin, see figure below. Denote by $\tau=\inf \left\{t: \underline{B}_{t} \notin \mathcal{E}\right\}$ the first time the Brownian motion $\left(\underline{B}_{t}\right)$ exits the region \mathcal{E}. Calculate the expected value of τ using the optional stopping theorem. Instruction: You do not need to check the conditions of the optional stopping theorem.

4. Calculate the solution $\left(V_{t}\right)$ of integral equation $V_{t}=v_{0}+\int_{0}^{t} V_{s} \mathrm{~d} X_{s}+Y_{t}-Y_{0}$ given the Ito processes $\left(X_{t}\right)$ and $\left(Y_{t}\right)$. Instruction: You may assume without proof that the solution of the equation $U_{t}=1+\int_{0}^{t} U_{s} \mathrm{~d} X_{s}$ is $U_{t}=\exp \left(X_{t}-X_{0}-\frac{1}{2}[X]_{t}\right)$. Hint: The result should be $V_{t}=U_{t} \cdot\left(v_{0}+\int_{0}^{t} \frac{1}{U_{s}} \mathrm{~d} Y_{s}-\int_{0}^{t} \frac{1}{U_{s}} \mathrm{~d}[X, Y]_{s}\right)$.

