Stoch. Anal. Exam, January 17, 2017

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 100 minutes to complete this exam.

1. The Stieltjes integral is well-defined. Let $f:[0, t] \rightarrow \mathbb{R}$ be a function of finite total variation, i.e., $V_{f}(t)<+\infty$. Let $g:[0, t] \rightarrow \mathbb{R}$ be a continuous function.
(a) Show that for any $\varepsilon>0$ there exists a $\delta>0$ such that for any partitions $\Delta=\left\{t_{0}<\cdots<t_{n}\right\}$ and $\tilde{\Delta}=\left\{\tilde{t}_{0}<\cdots<\tilde{t}_{n}\right\}$ of $[0, t]$ satisfying $|\Delta| \leq \delta$ and $|\tilde{\Delta}| \leq \delta$ and for any choice of sample points $\underline{t}^{*}=\left\{t_{1}^{*} \leq \cdots \leq t_{n}^{*}\right\}$ and $\underline{\underline{t}}^{*}=\left\{\tilde{t}_{1}^{*} \leq \cdots \leq \tilde{t}_{n}^{*}\right\}$ satisfying $t_{k-1} \leq t_{k}^{*} \leq t_{k}$ and $\tilde{t}_{k-1} \leq \tilde{t}_{k}^{*} \leq \tilde{t}_{k}$ we have

$$
\left|\mathcal{I}\left(\Delta, \underline{t}^{*}\right)-\mathcal{I}\left(\tilde{\Delta}, \underline{\tilde{t}}^{*}\right)\right| \leq \varepsilon, \quad \text { where } \quad \mathcal{I}\left(\Delta, \underline{t}^{*}\right)=\sum_{k=1}^{n} g\left(t_{k}^{*}\right) \cdot\left(f\left(t_{k}\right)-f\left(t_{k-1}\right)\right) .
$$

Hint: Consider the partition $\Delta \cup \tilde{\Delta}$ which is a subdivision of both of the partitions Δ and $\tilde{\Delta}$.
(b) Show that $\lim _{\left|\Delta_{n}\right| \rightarrow 0} \mathcal{I}\left(\Delta_{n}, \underline{t}_{n}^{*}\right)$ exists and is the same for any sequence $\left(\Delta_{n}\right)$ of partitions and sample points $\left(\underline{t}_{n}^{*}\right)$ (as long as $\left|\Delta_{n}\right| \rightarrow 0$).
2. Let $S_{n}=\xi_{1}+\cdots+\xi_{n}$, where ξ_{1}, ξ_{2}, \ldots, are i.i.d. and $\mathbb{P}\left(\xi_{k}=1\right)=\mathbb{P}\left(\xi_{k}=-1\right)=\frac{1}{2}, k \geq 1$. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ denote the natural filtration of the simple random walk $\left(S_{n}\right)$, i.e., $\mathcal{F}_{n}=\sigma\left(S_{1}, \ldots, S_{n}\right)=\sigma\left(\xi_{1}, \ldots, \xi_{n}\right)$.
Given some $f: \mathbb{Z} \rightarrow \mathbb{R}$ let us define

$$
f^{*}(x):=\frac{f(x+1)-f(x-1)}{2}, \quad f^{* *}(x):=f(x+1)-2 f(x)+f(x-1)
$$

(a) Let us define $X_{n}=f\left(S_{n}\right)$. Find the discrete Doob-Meyer decomposition of the process $\left(X_{n}\right)$, i.e., write $X_{n}=A_{n}+M_{n}$, where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Explicitly state the formula for A_{n} using the function $f^{* *}(\cdot)$.
(b) Write M_{n} as the discrete stochastic integral $(H \cdot S)_{n}$ of a predictable process $\left(H_{n}\right)$ with respect to the martingale $\left(S_{n}\right)$. Explicitly state the formula for H_{n} using the function $f^{*}(\cdot)$.
(c) Put the results of (a) and (b) together to obtain a formula for $f\left(S_{n}\right)-f\left(S_{0}\right)$ that looks like the discrete version of the right-hand side of the integral form of Itô's formula.
3. Let $\underline{B}_{t}=\left(B_{1}(t), B_{2}(t)\right)$ denote standard 2-dimensional Brownian motion. We also define the planar region $\mathcal{E}=\left\{(x, y): x^{2}-x y+4 y^{2} \leq 1\right\}$, which is an ellipse centered at the origin, see figure below. Denote by $\tau=\inf \left\{t: \underline{B}_{t} \notin \mathcal{E}\right\}$ the first time the Brownian motion $\left(\underline{B}_{t}\right)$ exits the region \mathcal{E}. Calculate the expected value of τ using the optional stopping theorem applied to well-chosen martingale.
Hint: If you have no idea, wave to me and I will give you a hint about the form of the martingale.

4. (a) Let $r, \sigma \in \mathbb{R}_{+}$and $z_{0} \in \mathbb{R}$. Find the Itô process $\left(Z_{t}\right)$ satisfying $Z_{t}=z_{0}-\int_{0}^{t} r Z_{s} \mathrm{~d} s+\int_{0}^{t} \sigma \mathrm{~d} B_{s}, t \geq 0$. Hint: First find the SDE corresponding to the integral equation satisfied by $\left(Z_{t}\right)$.
(b) Let us fix some $t \in \mathbb{R}_{+}$. What is the distribution of the random variable Z_{t} ?

