Stoch. Anal. Exam, January 22, 2019

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written two-sided A4-sized formula sheet with 30 formulas is allowed. You have 90 minutes to complete this exam.

1. Let us define $X_{n}=2+Y_{1}+\cdots+Y_{n}$, where Y_{1}, Y_{2}, \ldots are i.i.d. random variables with distribution

$$
\mathbb{P}\left(Y_{k}=-1\right)=\mathbb{P}\left(Y_{k}=0\right)=\mathbb{P}\left(Y_{k}=1\right)=\frac{1}{3} .
$$

Denote by $\left(\mathcal{F}_{n}\right)$ the filtration generated by the stochastic process $\left(X_{n}\right)$.
(a) (6.5 marks) Find the discrete Doob-Meyer decomposition of the process $\left(X_{n}^{2}\right)$, i.e., write

$$
X_{n}^{2}=A_{n}+M_{n}
$$

where $\left(A_{n}\right)$ is a predictable process and $\left(M_{n}\right)$ is a martingale with zero expectation. Give a simple and explicit formula for A_{n}.
(b) (6 marks) Given some $\beta \in \mathbb{R}$ find the constant $\gamma \in \mathbb{R}$ such that $\left(M_{n}\right)$ is a martingale, where

$$
M_{n}=\exp \left(\beta X_{n}-\gamma n\right) .
$$

2. Let $(B(t))$ denote standard Brownian motion. Show that the three processes below have the same law.
(a) $(B(t)-t B(1))_{0 \leq t \leq 1}$
(b) the conditional law of Brownian motion $(B(t))_{0 \leq t \leq 1}$ under the condition $B(1)=0$
(c) $\left((1-t) \int_{0}^{t} \frac{1}{1-s} \mathrm{~d} B_{s}\right)_{0 \leq t \leq 1}$

Instruction: It is OK to assume without proof that the three processes above are Gaussian. It is also OK to recall some details of Paul Lévy's construction of Brownian motion without proving them.
3. Let $\Phi(x)$ denote the c.d.f. of $\mathcal{N}(0,1)$
(a) (8 marks) Show that $\left(M_{t}\right)_{0 \leq t<1}$ is a martingale, where $M_{t}=\Phi\left(B_{t} / \sqrt{1-t}\right)$.
(b) (4.5 marks) Let us define the random variable Z by

$$
Z= \begin{cases}1, & \text { if } B_{1}>0 \\ 0, & \text { if } B_{1} \leq 0\end{cases}
$$

Let $\mathcal{F}_{t}=\sigma\left(B_{s}, 0 \leq s \leq t\right)$ denote the sigma-algebra generated by the Brownian motion up to time t. Find the constant C and the process $\left(X_{t}\right)_{0 \leq t \leq 1}$ adapted to the filtration $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq 1}$ such that

$$
Z=C+\int_{0}^{1} X_{s} \mathrm{~d} B_{s}
$$

4. We know that $\left(X_{t}\right)$ is an Ito process with $X_{0}=1$. We also know that the process $\left(U_{t}\right)$ given by

$$
U_{t}=\exp \left(t B_{t}\right)
$$

solves the integral equation

$$
U_{t}=1+\int_{0}^{t} U_{s} \mathrm{~d} X_{s}, \quad t \in[0,+\infty)
$$

Given this information, find X_{t}. Simplify your solution as much as possible.

