Stoch. Anal. Exam, 27.01.2015

Info: Each of the 4 questions is worth 12.5 marks. Write your name and Neptun code on each piece of paper that you submit. Separate the solutions of different exercises (and sub-exercises) with a horizontal line. No calculators or electronic devices are allowed. One hand-written A4-sized formula sheet is allowed. You have 120 minutes to complete this exam.

1. We defined Brownian motion on the interval $[0,1]$ by

$$
B(t)=t \cdot X+\sum_{i=0}^{\infty} \sum_{j=1}^{2^{i}} f_{j}^{i}(t) \cdot Y_{j}^{i}, \quad t \in[0,1],
$$

where

$$
f_{j}^{i}(t)=\left(\frac{1}{\sqrt{2}}\right)^{i} \cdot f_{1}^{0}\left(t 2^{i}-j+1\right) \quad \text { and } \quad f_{1}^{0}(t)=\left(\frac{1}{2}-\left|t-\frac{1}{2}\right|\right) \vee 0
$$

moreover X and $Y_{j}^{i}, i \geq 0,1 \leq j \leq 2^{i}$ are i.i.d. with standard Normal distribution.
(a) Draw the graph of the functions $f_{1}^{0}(t), f_{1}^{1}(t), f_{2}^{1}(t), 0 \leq t \leq 1$.
(b) Let $Z(t)=t \cdot X+\sum_{i=0}^{1} \sum_{j=1}^{2^{i}} f_{j}^{i}(t) \cdot Y_{j}^{i}$. Calculate $\operatorname{Var}(Z(2 / 3))$.
(c) Show that $(B(t))_{0 \leq t \leq 1}$ is a continuous function with probability one. In your solution you can use the following facts without proving them, however you are asked to clearly indicate where you used them: the uniform limit of continuous functions is a continuous function; Borel-Cantelli lemma.
2. If $\underline{x}=(x, y) \in \mathbb{R}^{2}$, denote by $\|\underline{x}\|=\sqrt{x^{2}+y^{2}}$ the Euclidean norm of \underline{x}.

The aim of this exercise is to show that if $\underline{B}_{t}=\left(B_{1}(t), B_{2}(t)\right)$ is a 2-dimensional Brownian motion starting from $\underline{x}_{0} \neq \underline{0}$ and if $\tau_{\varepsilon}=\inf \left\{t:\left\|\underline{B}_{t}\right\| \leq \varepsilon\right\}$ then $\mathbb{P}\left(\tau_{\varepsilon}<+\infty\right)=1$, i.e., \underline{B}_{t} always hits the ball of radius ε around the origin.
(a) Calculate the stochastic differential $\mathrm{d} M_{t}$ of

$$
M_{t}=\ln \left(\left\|\underline{B}_{t}\right\|\right) .
$$

(b) Use the optional stopping theorem to calculate $\mathbb{P}\left[T_{a}<T_{b}\right]$ for any $0<a<\left\|\underline{x}_{0}\right\|<b<+\infty$.
(c) Show that $\mathbb{P}\left(\tau_{\varepsilon}<+\infty\right)=1$. How did you use the continuity of $\left(\underline{B}_{t}\right)$?
3. We know that $\left(Y_{t}\right)$ is an Ito process with $Y_{0}=1$. We also now that the process $\left(X_{t}\right)$ given by

$$
X_{t}=\exp \left(t B_{t}\right)
$$

solves the integral equation

$$
X_{t}=1+\int_{0}^{t} X_{s} \mathrm{~d} Y_{s}
$$

Given this information, find Y_{t}.
4. (a) Solve the SDE

$$
\mathrm{d} X_{t}=X_{t} \mathrm{~d} t+\mathrm{d} B_{t}, \quad X_{0}=x_{0} .
$$

(b) The solution $\left(X_{t}\right)$ is a time-homogeneous Markov process: find its transition probability density function, i.e., find $p_{t}(x, y)$ for which we have

$$
\mathbb{P}\left(X_{s+t} \in[y, y+\mathrm{d} y] \mid \mathcal{F}_{s}\right)=p_{t}\left(X_{s}, y\right) \mathrm{d} y, \quad s, t \geq 0
$$

