Probability 1 – Exercises

Tutorial no. 12

28th Nov 2024

- 12.1 Let X and Y be two absolutely continuous random variables. Let X have a marginal PDF of $f_X(x) = \lambda^2 x \exp(-\lambda x)$ if $x \ge 0$, and 0 otherwise. Conditional on X = x, let Y be uniform on the interval [0, x]. What is:
 - (a) the joint PDF of (X, Y)?
 - (b) the marginal PDF of Y, and $\mathbb{E}(Y)$?
 - (c) $\mathbb{E}(X \mid Y = y)$ and $\mathbb{E}(Y \mid X = x)$?
 - (d) $\mathbb{E}(X)$? (Hint: use previous results)
 - (e) $\operatorname{Cov}(X, Y)$?
- **12.2** Let X_1, \ldots, X_n be independent and identically distributed random variables (iid). What is $\mathbb{E}(X_1 \mid X_1 + \cdots + X_n)$?
- **HW** 12.3 (2 points) Let X and Y be i.i.d. (independent and identically distributed) positive random variables.

$$\mathbb{E}\left(\frac{X}{X+Y}\right) = ?$$

12.4 Let Y be a normal variable with mean μ and variance 1, and the conditional distribution of X given Y = y is normal variable with mean y and variance σ^2 . What is the conditional distribution of Y given X = x?

Interpretation: Y is the original signal, X is the observed noisy version of the signal (i.e., the additive noise was an independent normal variable with mean zero and variance σ^2) and after detecting that value of the noisy version, we want to infer the original signal.

- **HW 12.5** (3 points) We take a PQ line segment with length 3 and break it into two parts, at a uniformly chosen point R. Let X denote the length of the PR line segment. The other, 3 X long line segment is broken again, at a uniformly chosen point S. Let Y denote the length of the RS line segment.
 - (a) What is the joint PDF of (X, Y)?
 - (b) Find $\mathbb{E}(Y \mid X = x)$.
 - (c) Calculate Cov(X, Y).
 - ♣ 12.6 (3 points) Let X, Y and Z be independent random variables. Let the CDF of X and Y be F(x) and G(y), respectively. Let Z be a Bernoulli random variable with parameter p. Determine the CDF of the following distributions:
 - (a) T := ZX + (1 Z)Y,
 - (b) $U := ZX + (1 Z) \max\{X, Y\},\$
 - (b) $U := ZX + (1 Z) \min\{X, Y\}.$
 - **12.7** We roll a die. If the result is *i*, then we choose Y uniformly on [0, i]. What is $\mathbb{E}(Y)$ and $\mathbb{D}^2(Y)$?
 - **12.8** The amount of time until a lightbulb breaks follows an exponential distribution with 9 months expected time. If the lightbulb breaks, I immediately replace it with the same kind of lightbulb. I use my lamp for T years, where T is a number uniformly chosen between 0 and 9 years. Let Y be the number of times I have to change the lightbulb during this time. $\mathbb{E}(Y) = ?$ and $\mathbb{D}^2(Y) = ?$

12.9 Let U_1 and U_2 be two independent random variables with uniform distribution on [0, 1]. Show that if

$$X = \sqrt{-2\ln U_1} \cdot \cos(2\pi U_2)$$
$$Y = \sqrt{-2\ln U_1} \cdot \sin(2\pi U_2)$$

Then (X, Y) have a joint Normal distribution.

- **HW12.10** (3 points) Let X and Y be the two coordinates of a point that we choose randomly on the disc with radius 1 around the origin. $(f(x, y) = \frac{1}{\pi} \text{ if } x^2 + y^2 \leq 1.)$ What is the joint density function of $R = \sqrt{X^2 + Y^2}$ and $\Theta = \operatorname{arctg}(Y/X)$?
 - **12.11** Let $X, Y \sim \text{Exp}(\lambda)$ be independent. What is the joint density of U := X + Y and $V := \frac{X}{X+Y}$? Show that U and V are independent.
- **HW 12.12** (2 points) Let $X_1, \ldots, X_n, X_{n+1}$ be independent, standard normal random variables, and let

$$Y = \frac{X_1 + \dots + X_n}{n}$$

- (a) What is the covariance matrix of (X_1, Y) ?
- (b) Find $\mathbb{P}(|Y| \leq |X_{n+1}|)$.
- 12.13 Two rival research groups are trying to estimate the mass of a particle. The first group performs k measurements, while the second group performs l measurements. Both research groups estimate the mass of the particle by taking the empirical average of their respective measurements. The true mass of the particle is μ , and the (noisy) measurements have normal distribution with mean μ and variance of σ^2 , independently of each other. What is the probability that the estimate of the first research group is better than that of the second research group?
- **12.14** Let X be a standard normal distribution, and I independent from X, with $\mathbb{P}(I=1) = \mathbb{P}(I=0) = \frac{1}{2}$. Define Y as

$$Y := \begin{cases} X, & \text{if } I = 1\\ -X, & \text{if } I = 0. \end{cases}$$

- (a) Show that Y is standard normal.
- (b) Are I and Y independent?
- (c) Are X and Y independent?
- (d) Show that Cov(X, Y) = 0.