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Notation. The probability measure for the Erdős-Rényi random graph G(n, p) is denoted by Pp.

Subsets of a base set S will be denoted by ω ∈ {0, 1}S , thinking that ω(s) = 1 iff s ∈ ω.

The comparisons ∼, �, �, � are used as agreed in class.

“With high probability”, abbreviated as “w.h.p.”, means “with probability tending to 1”.

ExerciseB 1. An event for the Erdős-Rényi random graph, A ⊂ {0, 1}(
n
2), is called upward closed or increasing

if, whenever ω ∈ A and ω′ ⊇ ω, then also ω′ ∈ A. Show that, for any such event A, other than the empty

or the complete set, the function p 7→ Pp[A ] is a strictly increasing polynomial of degree at most
(
n
2

)
, with

Pp[A ] = p for p ∈ {0, 1}. In particular, there exists a unique p such that Pp[A ] = 1/2; this value is usually

called the critical (or threshold) density, and will be denoted by pc(n) = pAc (n).

ExerciseB 2. Find the order of magnitude of the critical density pc(n) for the random graph G(n, p) con-

taining a copy of the cycle C4. (Hint: as in class, use the 1st and 2nd Moment Methods.)

The critical density for the connectedness of G(n, p) is pc(n) = (1 + o(1)) lnn
n , with a pretty sharp

threshold. The following exercise is not a proof of this, just a small indication for the value.

ExerciseB 3. For p = λ lnn
n , with λ > 1 fixed, show that, with probability tending to 1, there are no isolated

vertices in G(n, p). On the other hand, for λ < 1 fixed, there exist isolated vertices w.h.p.

The following is an example of subgraph containment where the Second Moment Method fails.

ExerciseB 4. Let H be the following graph with 5 vertices and 7 edges: a complete graph K4 with an extra

edge from one of the four vertices to a fifth vertex. Show that if 5/7 > α > 4/6, and p = n−α, then the

expected number of copies of H in G(n, p) goes to infinity, but nevertheless the probability that there is at

least one copy goes to 0. What goes wrong with the 2nd Moment Method?

ExerciseB 5. Let Xk(n) be the number of degree k vertices in the Erdős-Rényi random graph G(n, λ/n),

with any λ ∈ R+ fixed. Show that Xk(n)/n converges in probability, as n → ∞, to P[Poisson(λ) = k ].

(Hint: the 1st moment of Xk(n) is clear; then use the 2nd moment method.)

ExerciseB 6. Flip a fair coin 60 times, and let X ∼ Binom(60, 1/2) be the number of heads. Using Markov’s

inequality for etX with the best possible t, which can be found by minimizing the convex function f(t) =

log(1 + et)− 5
6 t, show that

P
[
|X − 30| ≥ 20

]
≤ 2 · 360 · 5−50 < 10−6.

ExerciseB 7. Prove that for any δ > 0 there exist cδ > 0 and Cδ <∞ such that

P
[
|Poisson(λ)− λ| > δλ

]
< Cδ e

−cδλ,

for any λ > 0. (Hint: use the moment generating function of Poisson(λ).)
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ExerciseB 8. Let ξi ∼ Expon(λ) i.i.d. random variables, and let Sn := ξ1 + · · ·+ ξn. Prove that for any δ > 0

there exist cδ > 0 and Cδ <∞ (also depending on λ, of course) such that

P
[
|Sn −ESn| > δn

]
< Cδ e

−cδn.

Hint: use the moment generating function of Expon or the previous Poisson exercise!

ExerciseB 9. Let p, α ∈ (0, 1) arbitrary, and let αn → α such that αnn ∈ Z for every n. Using Stirling’s

formula, show that

lim
n→∞

− logP
[
Binom(n, p) = αnn

]
n

= α log
α

p
+ (1− α) log

1− α
1− p

.

When α = p, we are getting that P
[
Binom(n, p) = αnn

]
is only subexponentially small. In particular,

roughly how large is P
[
Binom(n, p) = bpnc

]
?

The next bonus exercise contains some analytic details regarding the moment generating function. The

main tool will be the Dominated Convergence Theorem (DCT): if {Xn}n≥1 and X and Y are random

variables on the same probability space, with the almost sure pointwise convergence P[Xn → X ] = 1, plus

|Xn| ≤ Y holds almost surely for all n, where EY <∞, then E|Xn −X| → 0, and thus EXn → EX <∞.

ExerciseB 10.* Assume that mX(t) := E[ etX ] <∞ for some t = t0 > 0, and let κX(t) := logmX(t).

(a) Show that etx < 1 + et0x for all 0 ≤ t ≤ t0 and x ∈ R. Deduce that mX(t) <∞ for all 0 ≤ t ≤ t0.

(b) Using part (a) and the DCT, show that if tn → t, all of them in [0, t0], then mX(tn) → mX(t). Thus

mX(t) and κX(t) are continuous functions of t ∈ [0, t0].

(c) Show that x < etx/t for any t > 0 and x ∈ R. Deduce that E
[
XetX

]
<∞ if 0 < t ≤ t0/2.

(d) Using that eb − ea =
∫ b
a
ey dy, show that (etx − 1)/t ≤ xetx for any t > 0 and x ∈ R. Using part (c)

and the DCT, show that m′X(0) = EX <∞.

(e) Deduce that κ′X(0) = EX. Deduce that if α > EX, then κX(t)− αt < 0 for some t ∈ (0, t0).

The goal of the final bonus exercise is to present one way to pass from G(n, p) to the G(n,M) model.

ExerciseB 11.* Fix δ > 0 arbitrary, and let pn ∈ (0, 1) and Mn ∈
{

0, 1, . . . ,
(
n
2

)}
be two sequences satisfying(

n
2

)
pn →∞ and (1 + δ)

(
n
2

)
pn < Mn for all n. Let An ⊂ {0, 1}(

n
2) be a sequence of upward closed events such

that Ppn [An ]→ 1. Prove that

P
[
G(n,Mn) satisfies An

]
→ 1 , as n→∞ .

In more detail:

(a) Show that P
[
Binom

((
n
2

)
, pn
)
< Mn

]
→ 1.

(b) Let En denote the number of edges in G(n, p). Deduce from part (a) that Ppn [An | En < Mn ]→ 1.

(c) Show that, for any M ∈
{

0, 1, . . . ,
(
n
2

)}
, we have Ppn

[
An
∣∣ En = M

]
= P

[
G(n,M) satisfies An

]
.

(d) Deduce from part (c) that Ppn
[
An
∣∣ En < Mn

]
≤ P

[
G(n,Mn) satisfies An

]
.

Combining parts (b) and (d) concludes the exercise.
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