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1 Introduction

1.1 The model class and context

The present PhD dissertation investigates the asymptotic properties of a random tree
growth model which generalizes the basic concept of preferential attachment.

In this family of tree growth models, the tree stems from a root in the beginning, and
vertices are added one at a time, the new vertex always attaching to exactly one already
existing vertex. The rule by which the new vertex chooses its “parent”, is dependent
on the degree distribution apparent in the tree at the time the vertex is born. This
dependence on the degree structure is characterised by a weight function w : N — R,
which function is the parameter of the model.

The models can be either in discrete time, when a vertex is born in every second,
or in continuous time, then birth times are random. For the problems we discuss, these
two versions are equivalent and can be translated into each other (details in Section 2.2).
The classical models and results of the area use the discrete time setting. However, for
the proofs we give, the continuous-time version is much more natural and convenient, so
this is what we will use. The method of investigating the discrete time growth model
by introducing the continuous-time setting described here, appears in [39], later in [41],
and, independently, in Oliveira and Spencer [36]. An otherwise widely applied technique
by the name of Poisson clumping, is based on the related, general idea of transforming a
discrete time model to continuous time via the introduction of independent, exponentially
distributed random times (see for example [1]).

One of the famous models, a realization of preferential attachment, is the Barabasi -
Albert graph [3], where the random choice of the parent for the new vertex is made using
probabilities exactly proportional to the degree of the existing vertices. The tree case of
this model corresponds to the the special case of the model considered in this dissertation,
namely, when w is chosen to be linear. The Barabdasi - Albert graph reproduces certain
phenomena observed in real-world networks, the power-law decay of the degree sequence,
for example. This was proved in a mathematically precise way in Bollobés et al. [8]
and, independently, in Méri [32]. Several more detailed results on the linear weight
function case can be found in Méri [33], regarding the maximum degree, and in Mori
[34], regarding the differences in the asymptotic degree distribution in the lower levels of
the tree, compared to that in the whole tree. In these papers, the techniques strongly
depend on martingales that are apparent in the system only in the linear case. For
a survey on random graph models that produce scale-free behaviour, see Bollobas and
Riordan [9] and Chapter 4 of Durrett [17].

The concept of preferential attachment generally means that the weight function w
is an increasing function. In the family of models that we are interested in, this is not
necessarily true. General weight functions are considered in the papers of Krapivsky and
Redner [25] and [26], where w(k) ~ k7, and non-rigorous results are obtained, showing
the different behaviour for v > 1 and 7 < 1. In the first region the limiting object does
not have a non-trivial degree sequence: a single dominant vertex appears which is linked



to almost every other vertex, the others having only finite degree. This statement is made
precise and proved rigorously in Oliveira and Spencer [36]. See also Chung et al. [10] for
a related model. The weight functions we consider in the present dissertation are such
that the model does not “blow up” this way, our class includes the second regime v < 1
mentioned above.

In the work of Dereich and Mérters [11], the authors take a closer look at the tem-
poral evolution of the degrees of individual vertices, in the same sublinear preferential
attachment case as we do. This paper refers to our work [41]. Certain random recursive
trees and random plane-oriented trees similar to our setting have also been studied before
in Smythe and Mahmoud [44].

Population growth models, studied excessively in the theory of branching processes
(see e.g. Jagers [22]), are intimately related to our model. This connection is the basis
for many of the proofs in the present dissertation, as discussed in detail in Section 3.

Tree growth processes based on fragmentation processes are closely related to our
investigation of the global properties of the model, as we will point out in Section 4
(see Remark 4.5 therein). Limiting objects called “random real trees” and “continuum
random trees” were introduced, to which the evolving trees converge, after an appropriate
rescaling of the distances on the tree. Much of the structure of these limiting objects is
understood, see e.g. Haas, Miermont et al. [19, 20, 21].

Our concept of the limiting measure g in Section 4 is different from these. It is
a measure on the set of leaves of the infinite complete tree (with each vertex having
exactly K children), which is a metric space, but the metric structure is trivial: it is
not a result of any spatial scaling, and it carries no information about the tree growth
process. On the other hand, the weights given by p are a result of an appropriate
rescaling of the tree size, where size means cardinality. In short, we are really interested
in the asymptotic weight distribution, and not the asymptotic metric structure. This
asymptotic weight distribution is also studied in the Physics literature, see e.g. Berestycki
[5], where a quantity analogous to the local dimension is calculated for a continuous time
fragmentation process.

Similarly, in the limiting continuous trees obtained in Haas, Miermont et al. [19, 20, 21|
by a spatial rescaling of the evolving tree, the metric structure is of main interest, and the
Hausdorff dimension and Hausdorff measure of sets are the natural questions to ask, see
Duquesne and Le Gall [15, 16]. However, in our model it is not the set, but the measure
which captures the long-term structure of the tree well, and of which the dimension is
interesting.

The continuous time version of our tree growth process can also be translated into
a branching random walk, with time turning into displacement. Then the asymptotic
growth can be described analogously, see the Biggins theorem in [7] or Lyons [30]. How-
ever, with that point of view, the natural questions about the limiting structure are quite
different.

In the last decades there has been much progress in describing the asymptotic struc-
ture of randomly evolving trees. As for a graph limit definition specifically related to our
results, introduced by Benjamini and Schramm, see [4] and the remarks after the results



in Section 3.3. For a general, detailed survey of research on random graph dynamics,
see the book of Durrett [17], the reference book of Drmota [14], and the yet unpublished
work of van der Hofstad [46]. A very useful reference on the real world inspiraton for
studying huge random graphs, on the way preferential attachment models fit into this
research, and also on the limit objects for graph sequences, is Lovasz [29].

1.2 Results, key methods, sources

The questions that we ask about the limiting behaviour of the random tree model are
categorized into two classes. Local properties focus on the neighborhood of the typical
vertex (e.g. sampled uniformly randomly after a long time) of the random tree, this is
the subject of Section 3. Global properties capture phenomena observable by looking at
the whole tree in the limit (e.g. asymptotic speed of tree growth in the continuous time
setting, and the “limiting success level” of a fixed vertex in the limit), these are presented
in Section 4.

Results.

Our main local results are the following. We determine the asymptotic distribution
of the degree sequence, which equivalently gives the limiting distribution of the degree
of a (uniformly) randomly selected vertex. We also look deeper into the structure of
the tree: we give the asymptotic distribution of the subtree under a randomly selected
vertex. Moreover, we present the asymptotic distribution of the whole tree, seen from
a randomly selected vertex. These results are stated in Theorems 3.1 and 3.2. We also
present Theorem 3.3, which is a weaker result than Theorem A in Nerman [35], but the
proof uses more elementary methods and it is probabilistically instructive.

When turning to global properties, we first investigate the asymptotic speed of tree
growth in the continuous time setting. We also ask questions about the limiting “success
level” of some fixed vertex, and this leads us to the concept of a certain random measure
1 on the leaves of the limiting tree, which captures a global property of the tree growth
in a natural way.

We prove the following results.

1. The limiting entropies (as time tends to infinity) of the random measures on the
different generations converge to a constant with probability one, as we let the
generation level to infinity. This constant h is called the entropy of the limiting
measure f. This result is stated in Theorem 4.1.

2. The Hausdorff and the packing dimension of the random limiting measure p are
constant and equal with probability one. The entropy and the dimension satisfy the
usual simple relation dimension = entropy . Moreover, the local dimension

japunov exponent
of u equals the Hausdorff dimension at p-almost every point. This result is stated

in Theorem 4.2.




3. Given the so-called weight function w, which determines the rule of the tree growth,
we provide an explicit formula for the entropy, and thus for the Hausdorff dimension,
in terms of w. The computation is presented in Section 4.8, which constitutes the
proof of Theorem 4.3.

Key methods.

The method regarding local properties is to embed the model into continuous time
(details in Section 2.2). The greatest advantage of this setting is that it reveals the
connection between the original, discrete time random tree model and the extensively
studied framework of general branching processes (see Section 3.5). Our main local results
gain their proofs through this relation, except for the proof of Theorem 3.3 which does
not rely on the strong theorems in branching processes.

The proofs of our global results also contain the continuous time embedding, but the
key element of those is a Markov process appearing naturally in the construction of a u-
typical leaf of the tree. After some discussion of the tree structure, the Markov property
is easy to see. Some technical difficulties arise from the non-compactness of the state
space.

Sources.

The numbered Theorems, Lemmas and Propositions, their proofs, together with most
of the comments and introductory texts in the dissertation are from the following papers.

e [39] A. Rudas, Random tree growth with general weight function. Posted to
arxiv.org in October 2004, unpublished. (The proof of Theorem 3.3 first ap-
peared here, and was later published as Section 2.3 of [40].)

e [41] A. Rudas, B. Té6th, B. Valké, Random Trees and General Branching Pro-
cesses. Posted to arxiv.org and submitted to Random Structures and Algorithms
in March 2005. Revised version accepted for publication and final version posted to
arxiv.org in March 2006. Appeared in Random Structures and Algorithms online
version in October 2006, printed version in 2007. (Theorems 3.1 and 3.2.)

e [40] A. Rudas, B. Té6th, Random tree growth with branching processes - a survey.
Conference talk by A. Rudas at the workshop on Large-scale Random Graphs held
in Budapest in August 2006. Final version submitted June 2008, published as
Chapter 4 of Handbook of Large-Scale Random Networks in 2009. (Theorem 3.3
and the results in Section 4.3.)

e [42] A. Rudas, I. P. Té6th, Entropy and Hausdorff Dimension in Random Growing
Trees. Posted to arxiv.org in April 2010, revised version in June 2011. Ac-
cepted for publication in Stochastics and Dynamics in December 2011. Proof
reading received in June 2012, current status of final version is Online Ready on
www.worldscientific.com. (Theorems 4.1, 4.2 and 4.3.)
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2 Terminology, notation and the model

In the first subsection we introduce the (commonly known) terminology for rooted ordered
trees, together with supplementary notation needed for our model, the statement of
results and our proofs.

In the second subsection, we define two versions of the random tree model: embedded
into discrete and into continuous time. We show in the end of Section 2.2.2 that the
random tree evolving according to the continuous time setting, is equivalent to the Tree
evolving in the discrete time setting, if we look at it at random stopping times.

Section 2.2 also contains some model specific notation, used extensively throughout
the dissertation.

2.1 Vertices, individuals, trees

We consider rooted ordered trees, which are also called family trees or rooted planar trees
in the literature.

In order to refer to these trees it is convenient to use genealogical phrasing, we will do
so throughout the dissertation. The tree is thus regarded as the coding of the evolution of
a population stemming from one individual, the root of the tree, whose “children” form
the “first generation”, these are the vertices connected directly to the root. In general,
the edges of the tree represent parent-child relations, the parent always being the one
closer to the root. The birth order between brothers is also taken into account, this is
represented by the tree being an ordered tree (planar tree).

Let us fix a subset of positive integers, I, and let us label the vertices of a rooted
ordered tree using the elements of

N = U ", where I°:={0}.
n=0

We will consider slightly different cases of the model in Sections 3 and 4, and define
I in the two sections accordingly, as follows.

e Throughout Section 3 we choose I = Z*, this corresponds to the fact that any
vertex can have any number of children.

e In Section 4, except for a short analysis of the linear weight function case in Section
4.3.1, we will fix a positive integer K € N, and choose I := {1,2,..., K}. This
means that starting from Section 4.4, we restrict the weight function in such a way
that the vertices can have at most K number of children. We assume K > 2 to
avoid the trivial case when only one child is born per parent. (In that case the tree
growth is linear and the tree has no interesting structure.)

In our notation () denotes the root of the tree, its children are labelled with the el-
ements of I, and in general the children of © = (z1,29,...,2x) € N are labelled by

11



(x1, 22, ..., 2k, 1), (21,29, ..., 2k, 2),.... Thusif a vertex has the label x = (x1, 29, ..., x%) €
N then this means that it is the 2" child of its parent, which is the zt" | child of its own

parent and so on. If x = (21,9, ...,2%) and y = (y1, Yo, - - ., y;) we will use the shorthand
notation zy for the concatenation (z1,zs,..., Tk, y1,¥2,...,¥y), and with a slight abuse
of notation for n € I we use zn for (z1,xs,...,zx,n).

There is a natural partial ordering < on A, namely, z < z if x is ancestor of z, so if
Jy € N, y # 0 such that z = xy. We use < z meaning z < z or r = z.

We will identify a rooted ordered tree with the set of labels of its vertices, since this
already contains the necessary information about the edges. It is clear that a G C N
may represent a rooted ordered tree if and only if ) € G and for each (21, x9,...,2,) € G
we have (1,29, ...,x5_1) € G as well as (z1,z9,...,2, — 1) € G, if 7, > 1.

The set of finite rooted ordered trees will be denoted by G. We think about G € G
as an oriented tree with edges pointing from parents to children. The degree of a vertex
x € (G is the number of its children in G, so this terminology differs a little bit from the
usual:

deg(z,G) :=max{n €l:zn € G}.

The n'" generation of G € G is
G ={re€G:|z|]=n}, n>0,

where |z| = n iff z € I".

The n'" ancestor of v = (21, 9,...,2;) € N with k > nis 2" = (21,22, ..., Tp_p) if
k> n and 2" = @ if k = n. In Section 4 we will also use the notation p(x) = z! for the
parent of x.

The subtree rooted at a vertex z € G is:

G ={y: 2y € G}, (1)
this is just the progeny of x viewed as a rooted ordered tree. Also, (again with a slight
abuse of notations) for an z = (1, 22, ..., 2,) € N with |x| = n > k we use the notation
Tk = (Tp—ks1, Tnkt2, - - -, Tp). This would be the new label given to € G in the subtree
Gk

2.2 The random tree model

As the parameter of the random tree model, we fix a weight function w : N — R

For the definition of the discrete time model, we do not need any further restrictions
on w. In the continuous time case, we impose certain restrictions on w, see (M), these
are needed for the model definition, and also for our results in Section 3. In Section 4,
we will require w(k) = 0, k& > K, which will on one hand make sure that each vertex

can have at most K children, and on the other hand, it automatically implies condition
(M).
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2.2.1 Discrete time model

Given the weight function w : N — R, | let us define the following discrete time Markov
chain Y% on the countable state space G, with initial state T¢(0) = {0}. If for n > 0 we
have T¢(n) = G, then for a vertex z € G let k := deg(x, G) + 1. Using this notation, let
the transition probabilities be

w(deg(z, G))
>_yec w(deg(y, G))
In other words, at each time step a new vertex appears, and attaches to exactly one

already existing vertex. If the tree at the appropriate time is GG, then the probability of
choosing vertex z in the tree G is proportional to w(deg(z, G)).

P(Y4n+1)=GU{zk}) =

2.2.2 Continuous time model

Given the weight function w : N — R, let X (¢) be a Markovian pure birth process with
X (0) = 0 and birth rates

P(X(t+ dt) =k+1|X(t) = k) = w(k)dt + o( dt).

Let p : [0,00) — (0,00] be the density of the point process corresponding to the pure
birth process X (¢), namely let
p(t) = lime 'P((¢,t + ¢) contains a point from X) . (2)

e—0
Let p: (0,00) — (0, 00] the (formal) Laplace transform of p:

co n—1

o= [ eua =T (3)

n=0 =0

The rightmost expression of p(\) is easily computed, given the fact that the intervals
between successive jumps of X (¢) are independent exponentially distributed random
variables of parameters w(0),w(1),w(2),... respectively. Let

=1inf{\ > 0: p(\) < co}.

Throughout the dissertation we impose the following condition on the weight function
w:
li A) > 1. M
lim p(A) > (M)
Remark. At certain Sections of the dissertation, we will restrict ourselves to certain
smaller subclasses of weight functions, to be specified later. The condition described
above is nevertheless always fulfilled.
We are now ready to define our randomly growing tree Y (¢) which will be a continuous
time, time-homogeneous Markov chain on the countable state space G, with initial state

T(0) = {0}.

13



The jump rates are the following: if for a ¢ > 0 we have Y(¢) = G then the process
may jump to G U {zk} with rate w(deg(z,G)) where x € G and k = deg(z,G) + 1. This
means that each existing vertex x € Y(t) ‘gives birth to a child’ with rate w(deg(z, Y(t)))
independently of the others.

Note that condition (M) implies

i LI
— w(k)
and hence it follows that the Markov chain Y(t) is well defined for ¢ € [0, 00), it does not
blow up in finite time. A rigorous proof of this statement follows from the connection
with general branching processes (see Section 3.5) for which the related statement is
derived in [22].
We define the total weight of a tree G € G as

W(G) :=> w(deg(z,G)).

zeG

Described in other words, the Markov chain Y (¢) evolves as follows: assuming Y (t—) = G,
at time t a new vertex is added to it with total rate W (G) which is attached with an
oriented edge (pointing towards the newly added vertex) to the already existing vertex
x € G with probability

w(deg(z, G)) (1)

D yec w(deg(y, G))

Therefore, if we only look at our process at the stopping times when a new vertex is just
added to the randomly growing tree:

T, :=inf{t: |Y(t)| =n+1} (5)

then we get the discrete time model: Y(T},) has the same distribution as T¢(n), the
discrete time model at time n.

We have already introduced the notation G|, for the subtree rooted at x of the tree
G in (1). In the random tree model, we will use the two forms

Ta(t) = (1)), (6)

exchangeably throughout the dissertation. This is the subtree of Y(¢) rooted at x, which
is the set of descendants of x (including x) that are born up to time ¢. Note that ¢ here
is total time, and not the time since birth of z. In particular, |Y,(0)| = 0 if z is not the
root.

Throughout the dissertation, we will use 7,, to denote the birth time of vertex =z,

=inf{t >0 : x € Y(¥)} . (7)

Let o, be the time we have to wait for the appearance of vertex x, starting from the
moment that its birth is actually possible (e.g. when no other vertex is obliged to be born
before him). Namely, let

14



(a) o9 :=0,
(b) oy1 := 71,1 — 7y, for any y € N,
(¢) and oy := Ty — Ty(i—1), for each y e N and i > 2,1 € IL.

It will sometimes be convenient to refer to the vertices in the order of their birth, not

their genealogical code: let
{m} =T (Te) \ Y(Ti:—)

denote the vertex that appeared at Ty. Of course we will always have 1y = () and 1, = 1.
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3 Local properties

3.1 Introduction

In the present Section we investigate the local properties of the random tree after a long
time of its evolution. We ask questions about the neighborhood of the “typical” vertex
(e.g. sampled uniformly randomly) of the random tree, after a long time.

This Section relies on the paper [41], joint work with Béalint Téth and Benedek Valké,
and on the survey [40], joint work with Bélint Téth.

Our main results are the following. We determine the asymptotic distribution of
the degree sequence, which equivalently gives the limiting distribution of the degree of
a (uniformly) randomly selected vertex. We also look deeper into the structure of the
tree: we give the asymptotic distribution of the subtree under a randomly selected vertex.
Moreover, we present the asymptotic distribution of the whole tree, seen from a randomly
selected vertex. For a general approach for asymptotic distribution of random subtrees
of random trees, see [2]. These results give greater insight to the limiting structure of
the random tree.

The key of our method is to place the process into continuous time, as already in-
troduced in Section 2.2. Even without referring to the well-developed theory of general
branching processes, this makes it possible to give an argument for the convergence of
certain general ratios, see Theorem 3.3 in Section 3.4. This theorem has its stronger ana-
logue, Theorem A in Section 3.5, but our proof presented here is different from that in
[35], and although this approach does not give almost sure convergence, it is elementary
and instructive, and gives convergence in probability.

The greatest advantage of the continuous time setting is definitely that it reveals the
connection between the original, discrete time random tree model and the extensively
studied framework of general branching processes (see Section 3.5). Our main local
results gain their proofs through this relation. As an earlier application of a similar idea,
see the paper [38] of B. Pittel, in which the author establishes the connection with a
Crump—Mode branching process, and proves his results about the height of the uniform
and general ordered recursive tree, and also for a random m-ary search tree.

The present Section is organized as follows. We introduce some additional notation
about historical birth orderings, rooted ordered trees with a marked vertex at generation
k, distributions on these sets, the steady property of probability measures on G, and
backward extensions of measures, needed specifically for understanding the “local prop-
erties” of the random tree, in Section 3.2. After this, we state the main results of this
part of the thesis in Section 3.3. In the same Section we spend some time to present the
excplicit calculations that can be done in the special case when the weight function is
linear, in Section 3.3.1. Section 3.4 is devoted to the proof of convergence in probability,
not referring to the methods used in the theory of general branching processes. Then we
give a brief introduction to the field of general branching processes in Section 3.5, and
state the relevant results. The last subsection, 3.6 contains the proofs of the main local
results, Theorems 3.1 and 3.2.

16



3.2 Notation

Consider a G € G. An ordering s = (sg, 51, ...,5g-1) of the elements of G is called
historical if it gives a possible 'birth order’ of the vertices in G, formally if for each
0 <i<|G|—1 we have {so, s1,...,8;} €G. The set of all historical orderings of G € G
will be denoted S(G). For a fixed s € S(G) the rooted ordered trees

G(s,1) := {s0,81,.--,8i} CG

give the evolution of GG in this historical ordering s.
Throughout the Section we will use Greek letters to denote random elements (of
various distributions) selected from A and G:

C7...€./\/'7 F7...€g

Our results will deal with some asymptotic properties of a randomly chosen vertex in
a certain random tree. We will investigate the asymptotic distribution of its degree, its
progeny and also the progeny of its £ ancestor. In order to study the latter object, we
introduce rooted ordered trees with a marked vertex in generation k:

g(k) = {(G, u) € g x ZF ue GW}'

G is identified with G, since generation 0 consists of only the root, . We can use the
elements of G to describe the progeny of the k™ ancestor of a random vertex: G is an
ordered tree rooted in the k™ ancestor of the selected point and u € Gy is the position
of the random vertex in this tree. Clearly, if (G, u) describes the progeny of the k™
ancestor, then for 0 < [ < k the progeny of the I ancestor is described by (Gt ).
Thus if 7® is a distribution on G*) which describes the progeny of the k" ancestor
of a chosen vertex, then, if [ < k, the distribution of the progeny of the I** ancestor is:

a®D(H v) = 7® ({(G,u) € W : G = G,v = up})

The sequence ) of probability measures on G, k = 0,1,2,... is called consistent if
for any 0 <[ < k, the identity ) = gD holds.

Without presenting the precise formulation, it is clear that a consistent sequence 7*)
of probability measures on G gives full insight to the limiting structure of the tree as
seen from a random vertex, see Remarks 3.1, 3.2 and 3.3 after Theorem 3.2.

We call a probability measure w on G steady if

S w(H) Y WH,. =G} =(G) (%)

Heg $€H[l]

It is easy to check that in this case, for any k = 1,2, ..., the similar identity

SowH) Y W{H,, = G} = (G)

Heg mGH[k]
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follows. Equivalently, for any bounded function ¢ : G — R and any £k =0,1,2,...,

E(|T|e(Ty)) =E(p(),

where T" is a random element of G with distribution P(I' = G) = = (G), and on the
left hand side ( is a random vertex selected uniformly from the k-th generation of T'.
(We don’t have to worry about the fact that ' may be empty, since in that case the
expression |F[k}‘ ©(I'}¢) is automatically 0.) Immediate consequences of this property are
that the expected size of the k' generation is 1 for any k& € N (choose ¢ identically 1),
and therefore the expected size of the whole tree is infinite.

Backward extensions: Given a steady probability measure 7v on G, define the proba-
bility measures 7*) on G® £k =0,1,2..., by

7™ (G, u) = 7(G)

One can easily check that, due to the steadiness of the distribution 7, the sequence of
probability measures 7*) on G, k' =0,1,2..., is consistent.

3.3 Results

From condition (M) it follows that the equation

() =1 (9)

has a unique root \*.
Now we are ready to state our first theorem.

Theorem 3.1. Consider a weight function w satisfying condition (M) and let \* be
defined as above. Consider a bounded function ¢ : G — R. Then the following limit holds
almost surely:

. 1 T e
i ot 3 e, =3 [ ()

€Y (1)

From Theorem 3.1 several statements follow, regarding the asymptotic behavior of
our random tree as seen from a randomly selected vertex (, chosen uniformly from Y ().
As typical examples we determine the asymptotic distribution of the number of children,
respectively, that of the whole subtree under the randomly chosen vertex, its £ ancestor,
respectively. That is: the asymptotic distribution of deg(¢, T(t)) € N, T(t),, € G and
(T(t)¢g(k>> Qk) € g(k)'

In order to formulate these consequences of Theorem 3.1 we need to introduce some
more notation. Let G € G and one of its historical orderings s = (s, s1,...,8/¢g-1) €
S(G) be fixed. The historical sequence of total weights are defined as

W(G, s,i) == W(G(s,4)) (10)
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for 0 <7 < |G| — 1 while the respective weights of the appearing vertices are defined as

w(G, s,1) == w (deg ((s;)", G(s,i—1))) . (11)

for 1 <i < |G| —1. Since deg ((s;)', G(s,7 — 1)) is the degree of s;’s parent just before s;
appeared, w(G, s, 1) is the rate with which our random tree process jumps from G(s,i—1)
to G(s,1).

Given the weight function w : N — R, satisfying condition (M) and A\* defined as
before define

A g w(i)

k) =
P (k) Nt w(k) LNV w(i)
G| -2
. w(G,s,i+1)
m(G) = ) )\*+W H N+ W(G,s,i)

s€S(Q)

Theorem 3.2. Consider a weight function w which satisfies condition (M) and let \* be
defined as before. Then the following limits hold almost surely:

(a) For any fived k € N
{z € Y(t) : deg(x, Y(t)) = k}|

tlg?o (1)) =p,(k).
(b) For any fized G € G
y ){x €eY(t):T(t), = G}‘ - ;
P 1T(t)] = mu(G).
(¢) For any fired (G,u) € G
. ’{x e T(t) : (T(t) y,28) = (G, u)}’ e
ot T = mu(C):

Furthermore, the functions p,,, ™, are probability distributions on N and G, respec-
tively, and 7, is steady (i.e. identity (8) holds).

Remark 3.1. Parts (a), (b) and (c) of Theorem 3.2, in turn, give more and more
information about the asymptotic shape of the randomly growing tree Y (t), as seen from
a random vertex ¢ chosen with uniform distribution. Part (a) identifies the a.s. limit as
t — 00, of the degree distribution of (. Part (b) identifies the a.s. limit as t — oo, of the
distribution of the progeny of (. Finally, part (c) does the same for the distribution of
the progeny of the k™ ancestor of the randomly selected vertex with the position of this
vertex marked.
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Remark 3.2. From part (c) it is easy to derive the asymptotic distribution of the progeny
of the k' ancestor of the randomly selected vertex (as a rooted ordered tree without any
marked vertices):

e T® YO0 - ay

P ()] mu(G) |Gl

The limit is the size-biased version of mw,(G), with the biasing done by the size of the k'
generation.

Remark 3.3. Since the distribution m,, is steady, part (c) identifies the asymptotic dis-
tribution of the whole family tree of the randomly selected vertex ( (relatives of arbitrary
degree included). Hence asymptotically, as t — oo, the tree Y(t) viewed from a random
vertex ¢ will have the following structure (we omit the precise formulation):
— there exists an infinite path of ancestors ¢1,(2, (3, ... ‘going back in time’,
— we have finite ordered random trees rooted at each vertex of this path,
— the tree rooted at C* with the position of ( marked on it has distribution 7 on gW
where w&’f)(G, u) =y, (G).

A related graph limit definition had been introduced by Benjamini and Schramm, see

[4].

3.3.1 Linear weight function

In the linear case w(k) = ak + 8 (a, 8 > 0) all computations are rather explicit. In
this case the asymptotic degree distribution p,, (computed in [8], [32]) is reproduced,
of course. But even in this simplest case the asymptotic distribution 7, of the subtree
under a randomly selected vertex seems to be new.

For sake of completeness, in the rest of this section we perform these (explicit and
straightforward) computations for the linear case. Multiplying the rate function with
a positive constant only means the rescaling of time in our model thus it is enough to
consider w(k) = k + 5 (with 5 > 0). In this case it is straightforward to compute that
condition (M) holds, p(\) = %, A= 1land \* = 1+ . Thus both Theorems 3.1 and
3.2 hold.

For the asymptotic degree distribution we get

(k—1+ Pk

pulk) = (14 A g T g

where we used the shorthanded notation

k—1
(2 :H@-i):%, k=0,1,2, ...

For the calculation of m,(G) first we show that the sum which defines it contains
identical elements. In order to avoid heavy notation, during the following computations
we will use n := |G| — 1 and deg(z) instead of deg(z, G).
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Clearly, for any s € S(G)

n—1 deg(z)—1
[[w@s i+ =11 TI w6 |=]](deg() =1+ B)acgix)
i=0 zeG \ j=0 2€G

(Actually, the first equality holds for every weight function w.) It is also easy to see that
for any G € G

W(G) = (deg(x)+8) = |G| (1+8) — 1,

el
thus for any s € S(G)

> 1 1
MW () M WG s ) T @8 +2— 1 +8) Dt

Therefore
— HxGG(deg(aj) -1+ 6)deg(z)
Tl @) = SO B+ 2= (15 ) Dt

In the 8 = 1 case (i.e. if we consider random tree proposed in [3]) the previous calculations
give

4
(k+1)(k+2)(k+3)

p,(k) =

and

208(0)]
7Tw(Cg) = Q‘G’—{— ” Hdeg

The value of |S(G)| cannot be written as the function of degrees of G only, but one can
compute it using the values |G |,| for x € G. For a given G and z = (z1,23,...,2,) € G
let us introduce the following notations (these will not be used in the other parts of the
dissertation):

B(z):={ye G :y=(x1,22,...,2p-1,k), k > x,},
a(z) := max(|Gy,| — 1,1), b(z) := max (ZyeB |Gl 1)

For a G € G with |G| > 1

[S@)=(61-2)! 1] alz)b(z)™

z€G,x#D

The proof is a simple exercise and is left to the reader of the dissertation.
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3.4 Convergence in probability

In this section we present a proof of the convergence in probability of certain ratios of
variables, see Theorem 3.3 below. The result formulated here exists in a stronger form,
namely, the convergence holds in the almost sure sense, as stated by Theorem A in
Section 3.5. The proof presented here, though, uses more elementary methods and it is
probabilistically instructive.

In order to simplify technicalities, we restrict the class of weight functions from those
satisfying condition (M), see Section 2.2.2 to a somewhat smaller, but still very wide
class. We demand in this section that

w(k) = k7 + v(k) (12)

with some 0 < v < 1 and v(k) = o(k”) as k — oo, which implies that the weight function
varies regularly. Note that this way w(k) — oo as k — oo, but monotonicity for w is not
required.
Let us fix w(0) = 1, which can be done without loss of generality, since multiplying
all w(k) by a constant just corresponds to rescaling time in the continuous time model.
Let A* be the constant defined by (9), and with the letters ® and W we denote positive
bounded functions ®,¥ : G — R.

Define
Zp =" o(Y(t),)

z€Y(t)

(the analogous definition in Section 3.5 is (26)). We use the notation

K= —0>\,/0\()\)‘/\ . / te N p(t)dt < oo . (13)
= . 0
(the analogous definition in Section 3.5 is (27)). We also introduce the notation

D(N) = /OOO e ME (®(Y(s))) ds . (14)

Theorem 3.3. Let w satisfy condition (12). Then

Z2 o
—t\I, — A( ) in probability, as t — 00.
Zy W ()

Remark 3.4. An analogous theorem is valid for any w satisfying (M), and convergence
holds in the almost sure sense, see Theorem 3.5 in Section 3.5.

To prove Theorem 3.3 we need Lemmas 3.1, 3.2 and 3.3 below.

Lemma 3.1. 1
B Z8)  LB0) = day ast oo, (15
K
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Remark 3.5. See Section 3.5 and Theorem 3.5 therein for the analogous, more general
result. There we see that e "' Z® itself converges almost surely to a random variable with
the appropriate expectation.

Proof. The key observation is the so-called basic decomposition, namely that

Zb = o)+ 32, (16)

jeN

where j runs over the children of the root, ®;(G) := ®(G);), and recall that 7; is the
birth time of vertex j.

The advantage of this formula is due to the fact that given the sequence (7;) ez, Zt@ J
has the same conditional distribution as Z -

At this point observe that if Z® is of some exponential order e, then A\ must be
the one defined by equation (9). This can be seen if we take expectation of both sides
in equation (16), supposing that lim; ,,, e Z® exists almost surely (and is a non-zero,
finite random variable, with finite expectation), we can write

Bl 1271 = B (e )
JEN

S () <8 (T o ().

jeN jeN

since limy_, o e*’\(t*Tj)Zf_jTj 4 lim; o e MZE.
So if the limit exists almost surely, and is non-zero and finite, with finite expectation,

then
E (Z e_’\7j> =N =1

jEN
must hold (compare with (9)).
For the convergence itself, using the notation

my =E (Z}) | (17)

taking expectation on both sides of (16) in two steps (first conditionally on (7;);ez, , then
taking expectation regarding (7;);ez, ), we get

t
m? = B@(() + [ mf p(s)ds. (18)
0
Taking the Laplace transform of both sides, we have

Mm(A) = B(A) + AP |
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so formally R
. d(N)
W=1= p(A)

From condition (M) it follows that there is an interval of positive length below A* where
the Laplace transform is finite, so 1/(1 — p(\)) has a simple pole at A\* (it is easy to check
that p'(A\*) < 0 and p”(A*) > 0). Taking series expansion and inverse Laplace transform
results that

1 e * *
my = ECI)()\*) N+ o(eM)

so, indeed, the statement of the lemma holds.
m

Recall the notation in Section 2.2.2, the birth times of the vertices in the first gener-
ation of the tree, (7;);-0, constitute the point process X. Similarly to the notation for
the density function p, let us denote the second correlation function by ps, namely, for
u # s, let

pa(u,s) := lim (6)"'P ((u,u + ¢) and (s, s + &) both contain a point from X) , (19)

£,0—0

and we define it to be 0 if u = s.
The following estimates are needed.

Lemma 3.2. Suppose that w satisfies the conditions described in the beginning of Section
3.4. Then

(a) )
Cy = / e P op(s)ds < 1, (20)

(b) o o
Cy = / / e N W) gy (u, 5) duds < oo . (21)
o Jo

Proof. The first statement is obvious, considering that

/ e p(s) ds = p2A) < p(N) =1,
0
since p strictly decreases and A* > 0. As for statement (21), write Cy as follows:

Cy=2 ) E(e M)

1<i<j

Since for any ¢ < j, 7; can be decomposed as the sum of the two independent variables
7, =7, + (1; — 7;), it can be seen that

E(e—)\*Tj> _ E<€—)\*Tie—)\*(7j—n)) — E(e—)\*Ti>E(e—)\*(Tj—Ti)>’
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It now follows that

-\ 7
—2)\ TZ —)\* (5—7i)\ — —2)\*7'1 ( J)
o2 Y 2y e ECT)
1<i<y 1<i<y
From here we get the estimate
—)\* E (6—2)\*n)
_ —2X\*1; —A*T;
Cr=2 Z —A*n E (e ) <2 <Z E (e >n) ZE (e ) ]
1<z<] 2 J
where the second sum is just p(A\*) = 1, while the first is
oo n—1 oo n—1
A+ w(
1— .
S ram =S (- o tam)

So far this was all general, but under the specific assumptions (see (12)) on w, the
final expression is finite, as follows. If v = 1 then the logarithm of the product is
—X*logn + o(logn). This means that the sum is Y n~*"~9) for some g(n) — 0, thus
the sum is finite, since \* is strictly greater than 1, by A* > A =1. If 0 < v < 1, then
the sum can be bounded by >~ exp(—cn!™) for some ¢ > 0.

This completes the proof of Lemma 3.2.

m
Lemma 3.3.
E(e " Z2ZY) = CO(N)T(NY)
for some constant C' > 0. (This constant depends on the weight function w).
Proof. According to the basic decomposition, we can write
ZZ) = (Y () W(Y(t))
(1)) Z Z, 7 4+ U(Y(1)) Z 7,
: —
+ Z 20720 + Z VA
]
Taking expectation yields
mp = E(ZZ)) = BE(D(T(t) (T (1))
E ((I)(T(t)) SNz +u(r) Yy zfj)
i=1 =
t t t
[ mtoas e [ [ md mf p(ws)duds,(22)
0 0o Jo
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recall the notation my = E(Z?) from (17).

After multiplying the equation by e=?}"*) we can easily identify the limit (as t — co)
of the first, second and fourth terms in (22), as follows.

First term: since ® and ¥ are bounded, lim; ., e 2* 'E (®(Y(¢))¥(Y(¢))) is trivially
0.

Second term: let ® be bounded by the constant D < oo, then

00 t
e MR (‘P(T(t)) Z Zt\pj> < De_Q’\*t/ m; .p(s)ds
0

— De—2t (mzlf _ E(\IJ(T(t))) ,

the limit of which is 0 since my is of order e (see (18)), and since W is bounded.
Fourth term: Let us introduce m® := e *'m2, and m;"" := e 22"'mY. By Lemma

3.1, limy 0o M = dg and lim;_,o, My = dy. With these, and using Lemma 3.2,

tlim/ / ey e N ) py(u, 8) duds = Codgdy,
—00
by dominated convergence.

This way we see

t
~<I>\II ~ o U

my my s e 2 p(s) ds + Codepdy + & (23)
0
where ¢, — 0 as t — oo.
Now let us assume for a moment that the limit dg ¢ := lim;_,o mt ¥ does exist, and
is finite. In this case dominated convergence could also be used in the third (normahzed)
term of (22), and the following would be true:

t t

: _ontt, B ®U o\t
lim [ e Xt p(s) ds = lim [ e 25p(s)ds = Crdgy

recall the notation and result in Lemma 3.2.
This way if mf ¥ was convergent, then its limit could only be

Cy
1-Cy

dd) v = dq:d\p )

recall that C; < 1, by Lemma 3.2.
To show that the limit really exists, first note that mf’ ¥ is bounded. This is true
since with MY := sup,_, m>Y and M® := sup,.,m?, we get

Mtq),\ll S E+Mt@,\lfcl +M¢’M\I}CQ7

where E is an upper bound for ¢;. This way Mtq)’\l’ is bounded by a constant independent
of t (again, C; < 1), thus m;"" is bounded.
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Let us introduce the difference of mf ¥ and its supposed limit,

L ~Dv C12
Ng = My — 1 C
— v

dedy (24)
and rearrange equation (23),

t
ng = / nt_se_”‘*sp(s) ds + Et ,
0

where &, — 0 as t — oo.
Since we have shown that ;" is bounded, so is n;. Let N; := SUPysy |, By 1=
sup,s; |€s], and fix arbitrarily 0 < u < ¢. For these and for all ¢ > t,

/ nge N p(t — s) ds
0

t
/ nge 22 =) p(t — s) ds

Recall that [ e *"p(t) dt = p(A*) = 1 and [~ e} p(t) dt = p(2A*) = C1, and thus

Ine| < |Ey| +

+

| < By + e Ng + N,Ch

This way
Nto S Eto + 6_)\*(t0_u)N() + Nucl .

Letting ty — oo with u remaining fixed,
Noo S Nucl )

and now letting u — oo
Ny < N (7 .

Since €7 < 1 this means that N, = 0, so mf’ Vs convergent and its limit is

. C
NN N A PR DN ® Uy _ 2
tlimoo m, = tli)mooe E(ZZ) = —C, dedy ,
as stated by the lemma. O

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.5. Let A; := e N Z? and B; := e™*"'Z¥. Denote the limits of their
expectations a := limy_,o, E(A;) and b := lim;_,., E(B;). From Lemma 3.3 we see that
E(A;B,) — Cab, and also E(A?) — Ca? and E(B?) — Cb?, for some constant C' > 0.
This implies that

E ((bA; — aB;)*) = 0

so (bA; — aB;) — 0 in L? and thus in probability, too.
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Now fix any positive 6,7 > 0, then

P(‘é—g >5)—

By b
At a
> = _ -
>5}ﬂ{Bt_77}>+P({ )

At a
P a2
({ By b

< P (|bA; — aB,| > bon) + P(B, < ).

>5}Q{Bt<n})

Since the first term tends to 0 by the previous observation, it remains to show that in
the limit, B; does not have a positive mass at 0, and then the statement of the theorem
is true.

But since (By)¢o is tight, being bounded in L, in every subsequence there is a sub-
subsequence (t,)n>o along which B, converges weakly to some random variable Y. By
(16) for this variable, in distribution,

o0
N\ETs
Y = g e Y5,
=1

where the Y are iid with the same distribution as Y.
This means that

P(Y =0) = P(Y; =0 for all j) = lim (P(Y = 0))*.
It follows that if Y had a positive mass at 0, then Y would be a random variable that is
almost surely 0. Since we know that its expectation tends to a positive limit, this could
only happen if E(B?) converged to oo, but in fact it converges to a finite positive limit,
according to Lemma 3.3. Thus, Y does not have a positive mass at 0, so the statement
of Theorem 3.3 holds.
O

3.5 Branching processes

The random tree model, defined in continuous time, has the big advantage that it fits
into the framework of the well-established theory of general branching processes. We give
a brief introduction to the fundamentals and state the theorems that we rely on in our
proofs. We do not give a broad survey on the most general types of branching processes
here, we choose to focus on the results which may be applied to our process. For more
details see the monograph [22] or the papers [23], [35], [37] and the references therein.
For a survey on branching processes, trees and superprocesses, see [28].

In the case of a general branching process, there is a population in which each in-
dividual reproduces at ages according to i.i.d. copies of a random point process £ on
[0, 00). We denote by £(t) the -measure of [0, ], this the random number of children an
individual has up to time ¢.
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The individuals in the population are labelled with the elements of N, as described
in Section 2.1 (see (2.1)). The basic probability space is

(A P) =[] (% As, Po),
zeN

where (€2, A,, P;) are identical spaces on which &, are distributed like &.
For each x € N there is a .|, shift defined on §2 by

<w¢z )y = W$y7

in plain words, w, is the life of the progeny of x, regarding x as the ancestor.
The birth times 7, of the individuals are defined in the obvious way: 79 = 0 and if
' = xn with n € Z, then

T = Tp +inf{t : £.(t) > n}. (25)

The branching process is often counted by a random characteristic, this can be any
real-valued process {® : R x Q@ — R}. For each individual z, ®, is defined by

D, (t,w) = 0(t,w,,), (26)

in plain words ®,(t) denotes the value of ® evaluated on the progeny of z, regarding x
as the ancestor, at the time when x is of age t. We can think about ®,(t) as a ‘score’
given to x when its age is t. With this,

ZP =) 0,(t—1.)

zeN

is the branching process counted by the random characteristic ® (the ‘total score’ of the
population at time t).

For our applications we only consider random characteristics which are 0 for t < 0
and equal to a bounded deterministic function of the rooted tree for t > 0.

This means that only those individuals contribute to Z® which are born up to time
t and their contribution is a deterministic function of their progeny tree. (Random
characteristics may be defined in a more general way, see e.g. [22], [23].) One of the
important examples is ®(¢) = 1{t > 0} when Z? is just the total number of individuals
born up to time t.

The Laplace-transform of d£(¢) will be of great importance, we denote this random
variable by:

E(N) = /0 Y de(t).

We shall be interested in supercritical, Malthusian processes, meaning that there exists
a finite 0 < \* < oo (the so-called Malthusian parameter) for which

~

E{A) =1,
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and also -
k=0 (BEW) ‘A:A* - E/O te N AE(t) < oo (27)

(The last property means that the process is Malthusian and the first means that it is
supercritical.) Also, we require the reproduction to be non-lattice, which means that the
jumps of £(t) cannot be supported by any lattice {0,d,2d, ...}, d > 0 with probability
one.

We quote here a weaker form of Theorem 6.3 from [35], using its extension which
appears in Section 7 of the same paper. This way the conditions of the original theorem
are fulfilled automatically.

Theorem A (Nerman, [35]). Consider a supercritical, Malthusian branching process with
Malthusian parameter X\*, counted by two random characteristics ®(t) and V(t) which
have the properties described above (i.e. they are 0 fort < 0 and a deterministic bounded
function of the progeny tree for t > 0). Suppose that there exists a A < X* for which

~

EE()) < oc.
Then almost surely R
ZP O\
¢ = as t — 00,
Zy W)

where 3(\) = [ exp(—AE(D(1)) dt.

In Theorems 3.1 and 3.2, we determined the asymptotic ratio of vertices in Y(¢)
satisfying certain properties. The proofs of these Theorems rely on Theorem A above.

It is also natural to ask questions about the asymptotic number of the respective
vertices, as we will do so in Section 4. This essentially requires to study the asymptotic
behavior of Z? for a suitable random characteristic ®. Here we give two of the results
in the framework of general branching processes that relate to this subject, and we will
refer to these Theorems in Section 4.

As we have seen in Section 3.4, Lemma 3.1,

. 1.
E(e™'Z7) — ~2(\), (28)

thus we need to divide Z® by e** to get something non-trivial. We quote here a weaker
form of Theorem 5.4 of [35].

Theorem B (Nerman, [35]). Consider a supercritical, Malthusian branching process
with Malthusian parameter X*. Suppose that condition (M) holds and ® is a random
characteristic with properties described before. Then almost surely

* 1’\ ~
eNZP 5 —O(A\)O, ast— oo, (29)
K

where © is a random variable that does not depend on ®.
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The necessary and sufficient condition for the random variable © to be a.s. positive
is the so-called = log x property of the reproduction process &:

o~ o~

E(§(A\)log" £(X7)) < o0 (L)
We quote Theorem 5.3 of [23].

Theorem C (Jagers-Nerman, [23]). Consider a supercritical, Malthusian branching pro-
cess with Malthusian parameter \*. If condition (L) holds then © > 0 a.s. and E(©) = 1;
otherwise © =0 a.s.

Remark 3.6. This theorem is the generalization of the Kesten-Stigum theorem, which
states this fact for Galton-Watson processes (see [24]).

We do not intend to identify the necessary and sufficient condition on the weight
function w in the random tree model which would guarantee that the corresponding
reproduction process possesses property (L), still we will give certain sufficient conditions
for Theorem B and Theorem C in Section 4. There, we will also derive results for the
random variable O, in the case of a special choice of ®.

3.6 Proofs of results

Proof of Theorem 3.1. Consider the continuous time branching process where the repro-
duction process £(t) is the Markovian pure birth process X(t), with rate function w,
described at the beginning of Section 2.2.

Clearly, the time-evolution of the population has the same distribution as the evolu-
tion of the continuous time random tree model corresponding to the weight function w.
The vertices are the respective individuals and edges are the parent-child relations.

It is also not hard to see that the function E£(A) for the branching process is the
same as p(A) which means that by condition (M) we may apply Theorem A with ap-
propriate random characteristics. Given any bounded function ¢ : G — R, setting the
characteristics ®, U as ®(t) := ¢(Y(¢)) 1{t > 0} and V(¢) := L{t > 0} we get exactly
the statement of Theorem 3.1. [

Proof of Theorem 3.2. (a) Apply Theorem 3.1 with the function
o(G) = 1{deg(0,G) = k}.
This gives that

T(t) : T
i 112 € T(t) : deg(a,
t—00 T(t)]|

(&) =k} _ /°° ¢V 1P (deg(D, Y (1)) = k) dt,

almost surely. By the definition of 7 (see (25)):

P (deg(0, T(1) = k) = P(r, < ) — P71 < 1).
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Since -
v [ e P (n <) d =B ),
0

and 73 is the sum of independent exponentially distributed random variables with pa-
rameters w(0),w(1),...,w(k — 1), we get

o w(i)
A+ w(k) Lo A+ w(i)

A* / h eV 'P(deg(0,T(1)) = k) dt =

This completes the proof of part (a) of the Theorem.

Note that since
H T H TeE

is a telescopic sum adding up to 1, p,, is indeed a probablhty distribution on N.

(b) Let G € G be fixed and denote n = |G| — 1. We apply Theorem 3.1 with p(H) =
1(H = G). We need to compute

A* / e M 'P(Y(t) =G)dt.
0
Consider the following random stopping times:

¢ = sup{t>0:7(¢t) C G},
1o = sup{t >0:Y(t) € G}.

That is: 7¢ is the birth time of the first vertex not in G, while 7/, is the minimum of 74
and the time when we first have Y(¢) = G, if the latter ever happens. Since

P(Tt)=G)=P(Y(t) CG)-P(Y(t) CG)=P(t<1) —P(t <15),

we get that

v [N BT =Gyt = BN - o)
0
= E((e”\*T& — e N7 < 16}).

Note that by the definition we always have 7/, < 7¢. The event {7/, < 7¢} means
that there is a ¢ when Y(¢f) = G. On this event 7/, gives the time when we first have
YT(t) = G and 7¢ gives the appearance of the next vertex. Given the event {7}, < 74},
the conditional distribution of 74 — 7, is exponential with parameter W(G) and it is
(conditionally) independent of 7/,. This leads to

)\*

E((e—)\*’r'c AT TG)]l{TG < Tg}) m

E(e V6 1{7, < 16}).
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Now, it is clear that the following two events are actually the same
{re: <7a} = {(no,...,m) = (s0, ..., 5,) for some s € S(G)}.
This implies that
E(e‘A*Té;Il{T'G < 16})
= Z E(e ™™ 1{(o,..-,m) = (Sos---+5n)})-

s€S(G)

For T,, see (5) and the definition below it. Given s € S(G) fixed

n—1 .

w(G, s, i+ 1)
P cey ) = (S0s- -4 8n)) =
((7707 ) 7 ) (50 S )) P W(G,S,l)

(See (4), (10) and (11) for the definitions.) Also, if s € S(G) is fixed then condi-
tionally on the event {(no,...,nn) = (So,-..,8,)} the random variables Ty — Ty,
k = 0,1,...,n — 1, are independent and exponentially distributed with parameters

W(G, s, k), k=0,1,...,n—1, respectively. This is an easy exercise: it may be proved by
using the ‘lack of memory’ of the exponential distribution and the fact that the minimum
of independent exponentially distributed random variables with parameters vy, s, ...,
is also exponentially distributed with parameter Zizl v;. Hence it is straightforward to
get

n—1

. w(G, s,i+1)
E(e=N T = —
(e ]1{(7707 ﬂ?n) (50; )8 H)\*+W G,s z)

Collecting our previous calculations part (b) of Theorem 3.2 follows.
Using the identity

7o(@) = N /0 TeNP(T() = G)

and the fact that |Y(¢)| is finite for every ¢ with probability 1 it is straightforward to
prove that 7, is indeed a probability distribution on G.

(c) This is straightforward since for any H € G and (G, u) € G*) we have
{z € H: (Hj,w,zuw) = (G, u)}| =z e H: H,=G}.
The statement now follows from part (b).

The only thing left to prove is that 7, satisfies (8), i.e. it is steady. First observe, that
if Gy € G is fixed and ( is a uniformly chosen random vertex in G then the distribution
of I' := (Go), (which is a probability distribution on G) is steady. (This follows by simple
counting.) Equation (8) is linear in 7r, therefore mixtures of steady distributions are also
steady. Thus, if ¢ is a uniformly chosen random vertex in Y(¢) then the distribution of
T(t),, (which is a random probability distribution on G) is also steady. By part (b) with
probability one these distributions converge (in distribution) to 7, and from this an easy
consideration shows that 7, must satisfy (8). O
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4 Global properties

4.1 Introduction

The results in Section 3 focus on the local properties of the random tree, namely, they
give results concerning the neighbourhood of a uniformly random vertex, which is chosen
from the tree after a long time of tree evolution. In this Section we concentrate on global
properties of the limiting tree.

One of the first global questions about the continuous time model is the speed of the
tree growth. We have already seen results that show that the size of the tree at time ¢
is of order exp(A*t). There are several results about the limit distribution, as t — oo,
if we scale by this order. Moreover, in certain subclasses of the weight function, the
momentums of the distribution can be calculated, as we will see in Section 4.3.

It is also natural to pose the following question. Let us fix a vertex, say the first
vertex in the first generation (first child of the root). What is the “limiting success level”
of this vertex, compared to the other vertices in the same generation? What we mean
by this is the number of descendants of this vertex, after a long time of tree evolution,
compared to the number of descendants of its brothers.

Another formulation of the same question is to fix a vertex, let the tree grow for
a long time, then choose a vertex uniformly at random from the big tree, and ask the
probability that this random vertex is descendant of the fixed vertex. Clearly, if we look
at these limiting probabilities for let us say the first generation, we get a distribution,
itself being random, that codes an important information of the evolution of the tree.

If one looks at the system of these limiting (as time evolution of the tree tends to
infinity) random distributions on the different generations of the tree, it is tempting to
ask something about the limiting measure of this system, when letting the generation
level tend to infinity. We will define the above concepts properly, and will denote this
overall limiting measure by pu.

Having a random measure in our hand, which describes a global property of the
limiting infinite system, it is natural to ask about the Hausdorff (and packing) dimension
of this measure. On the other hand, the dimension of the measure depends on a parameter
of the underlying metric, which is arbitrary. To rule out this (trivial) dependence, it is
usual to ask about the entropy of the limiting measure, which depends on the growth
process only. This is the natural equivalent of the dimension from a dynamical point of
view.

The key to our results is a Markov process appearing naturally in the construction of a
p-typical leaf of the tree. After some discussion of the tree structure, the Markov property
will be easy to see. Some technical difficulties will arise from the non-compactness of the
state space.

The model choice is special in the sense that we only allow a finite degree for each
vertex, but it is general in the sense that after having fixed the maximum number of
children K a vertex may have, the weight function w, which determines the rule of
attachment, can be any positive-valued function on {0,1,..., K —1}.
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This Section relies on the paper [42], joint work with Imre Péter T6th, and on the
survey [40], joint work with Bélint T6th.

Structure of the present section

The present Section is structured as follows. We introduce some additional notation,
and also repeat some facts from Section 3 that we need, in Section 4.2. After that, we
focus on the asymptotic growth of the tree, with the appropriate scaling, in Section 4.3,
first recalling some earlier results and giving general arguments, then going into detailed
calculations about the momentums of the distribution in two special choices of the weight
funtion. Namely, in Section 4.3.1 we investigate the linear case, and then in Section 4.3.2
we turn our attention to the class of models with Bounded Degree. After this, we will
keep this model and stick to it throughout the whole section.

In Section 4.4 we identify random measures on the finite generation levels of the tree
in the ¢ — oo limit, and then take the limit of these, as the generation level tends to
infinity. This way, a random measure is defined on the leaves of the infinite tree, in
Section 4.4.1, and this measure is the limiting object that we are interested in. For the
sake of the dissertation to be self contained, we briefly review the definitions of local
dimension, Hausdorff dimension and packing dimension of measures, in Section 4.4.2.

After all this, we are ready to state our results in Section 4.5. The proofs are struc-
tured into three subsections. In Section 4.6 we give the main line of the proofs of The-
orems 4.1 and 4.2, but delay the proofs of certain auxiliary lemmas to Section 4.7, and
then we conclude with the calculation of the entropy in Section 4.8, which constitutes
the proof of Theorem 4.3.

4.2 Notation and model choice

Except for a short subsection (see Section 4.3.1), we will restrict our weight function to
the following class of functions.
We fix a positive integer K > 2, and we require the weight function to be zero above
K:
w(k)=0, k>K. (30)

As is clear from the model definition, see Section 2.2, this restriction makes sure that any
vertex can have at most K children. The vertices of the random tree are labeled with

elements of .
N = U 1",
n=0

as in (2.1), but now with the choice of I = {1,2,..., K}. Since we require (30), the
weight function automatically fulfils (M), the condition stated in Section 2.2.2.

The same way as in Section 2.2.2; let 7, be the birth time of vertex z, and o, the
time we have to wait for the appearance of vertex x, starting from the moment that its
birth is actually possible (e.g. when no other vertex is obliged to be born before him).
For the precise definition see (7).
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Recall also the function p: (0,00) — (0,00) defined in (3) (see Section 2.2.2),

500 :EZAZZH%

Recall that the reason for the notation p is that this function is the Laplace transform of
the density of the point process formed by birth times in the first generation of the tree,
see (3) in Section 2.2.2.

In the present section we use some of the results in Section 3, we list them here.

1. The equation
AN =1
has a unique root A* > 0, the Malthusian parameter.

2. This \* gives the rate of exponential growth of the tree size almost surely. The
normalized size of the tree converges almost surely to a random variable, which we
denote by

0= tlgg} e M) . (31)

Remark 4.1. See Section 4.3 for results on the distribution of ©.

3. O is almost surely positive, and
0 < EO < oo,

which implies (also) that almost surely the process Y (¢) does not blow up in finite
time.

4. Moreover,
E©’ < . (32)

The first statement is in our setting obvious from the definition, since we have assumed
2 < K < 0o. The second and third follow from Theorem B and Theorem C in Section 3.5,
we will also refer to it in Section 4.3. The last statement is also implicit from Section 3.5,
the calculation for the variance is presented in Section 4.3.2. Alternatively, the finiteness
of the variance follows from Theorem 6.8.1 in [22], which states L? convergence of the
normalized size under the condition E[(325 | e="7)?]
K < 0.

< 00, which is again obvious, since

Remark 4.2. The process Y(t) has an alternative construction, which we state here and
refer to later. Define a countably infinite number of independent random variables &,
indexed with the elements of N, as follows. Let 69 = 0, and for x = iyiy .. .1y, let &, be
exponentially distributed with parameter w(i, — 1). Denoting the parent of x by p(z), we
define 79 = 0 and

Te = Tp(a) T Op(@)1 T Op@)2 + - - - + Op(a)i,-

It is straightforward that with Y(t) == {x € N : 7, < t}, the process T has the same
distribution as Y.
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4.3 Asymptotic growth

The most natural question, already posed in Section 4.2 (see (31)) is how fast the tree
itself is growing, in the continuous time setting. In this subsection we derive results
regarding the distribution of ©, in various choices of the weight function w.

Let us repeat here the two conditions (M) from Section 2.2.2, and (L) from Section
3.5, as well as Theorem B and Theorem C from Section 3.5. These are needed to derive
results on the limiting random variable ©. Conditions M and L on the weight function
w are

lim p(A) > 1, (M)

E(£(\)log" (V) < o0 . (L)

Theorem B (Nerman, [35]). Consider a supercritical, Malthusian branching process
with Malthusian parameter X*. Suppose that condition (M) holds and ® is a random
characteristic with properties described before. Then almost surely

* ]_ ~ ~
e NZE 5 —O(A\)O =0, ast— oo, (33)
K

where © is a random variable that does not depend on ®.

Theorem C (Jagers-Nerman, [23]). Consider a supercritical, Malthusian branching pro-
cess with Malthusian parameter \*. If condition (L) holds then © > 0 a.s. and E(©) = 1;
otherwise © = 0 a.s.

If we choose the random characteristic as ®,(t) = 1{7, < t}, then Z* = |Y(¢)|. The-
orem B applies if condition (M) is fulfilled. We do not intend to identify the necessary
and sufficient condition on the weight function w which would guarantee that the corre-
sponding reproduction process possesses property (L). Still it is worth pointing out that
if w(k) — oo as t — oo, then this property holds, thus by Theorem C, O is a.s. positive.

Lemma 4.1. If a weight function w satisfies condition (M) and w(n) — oo, asn — oo,
then the corresponding branching process satisfies condition (L).

~

Proof. We will prove the existence of the second moment of {(A\*) from which condition
(L) trivially follows. Since £(A*) = >°C e ™, we need

E (i e_’\*T’“) < 0. (34)

k=1
The random variables 7,1 — 73 are independent exponentials for £ = 0,1,2,... with
parameters w(0),w(1), ..., respectively, thus a simple computation yields that the ex-

pression in (34) is equal to

—p(2)") +QZZ<H2A*+w H X”Fw >

=0 75=0
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Transforming the double sum on the right, we get

> (I Sy = o TG

1=0 =0 [=0

where we also used p(A*) = 1. On the other hand,

M rwl) = ! ) (A" +w(l))
ZHQ/\*er(l): A H 2)\*+w(l)) '

j=0 1=0 j=0 I= l

Let A\; be an arbitrary value for which A < A\; < A*. Since w(l) — oo, we have

A1+ w(@) (A +w(l))

WOV )

if [ is large enough. This leads to
A +w(l) o w(l) .
<C ——— < Cp(\) <
=0 1=0 j=0 1=
by condition (M) which completes the proof of the lemma. ]

The distribution of © is usually hard to determine from the weight function w,
however, one can characterize its moment generating function ¢(u) = Ee “©. Us-
ing the idea of the basic decomposition (16) one can write the following equation for

fu,t) .= Ee 1O
t)=e B[] flut

j>1
By Theorem B,
¢(u) = lim flue ™ 1) (35)
— 00
which gives
- E H ¢ —)\ ’TJ
7>1

It can be proved that this equation characterizes ¢ as there is no other bounded function
satisfying it with a right derivative —1 at 0. (See Theorem 6.8.3 in [22].)

4.3.1 Linear weight function

In this subsection we forget about the restriction that the degrees of the vertices are
maximized by K. Let us consider instead the case when the weight function is linear.
That is, for some a« > 0 and § > 0, for all £ € N, let the weight of a vertex of degree k
be

w(k) =ak+p.
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The corresponding Malthusian parameter (solution of (9)), is now \* = a + . For
the sake of computational simplicity it is convenient to re-scale w so that \* = 1, thus
a=1-p4,

wk) =1 -Pk+75, (36)

where 0 < 8 < 1. Note that g = 1 is allowed, and means that the weight function
is constant, which corresponds to the Yule-tree model (see [45]). Also, for any integer
m > 1, we allow the choice of f = —-. In this case w linearly decreases, and it hits
level zero at m, meaning that each vertex can have at most m children.

When a new vertex is added to the system, the sum of the weights in the tree increases
by two terms, with 1 — 3 because of the parent, and with 8 because of the new vertex.
Thus, each time a new vertex is added, the total growth rate increases by 1, independently
of the choice of the parent. This intuitively explains why the size of the tree grows
exponentially in time, with parameter \* = 1.

The previous observation means that N; := |Y(¢)| is a Markov process, which, at
time ¢, increases by one with rate N; — 1 + 3. Thus it is straightforward to set up a
partial differential equation for f(u,t) := E(e M), which can be solved explicitly. By
taking the limit lim; o, f(ue™",t), one arrives at the conclusion that © has Gamma(1, )
distribution.

For a further note on the linear weight function case, see Section 4.6.3. In order to
state that remark though, we will first need some more notation, introduced in Section

4.4.

4.3.2 Trees with bounded degree

We now turn back to the case introduced in Section 4.2, we consider weight functions
which ensure that each vertex can have a certain number of children at maximum, denoted
by K. From now on, throughout Section 4, we will restrict our investigations to this
subclass of models (the only, brief exception being the note on the linear case in Section
4.6.3).

In the present subsection, we derive the first and second moments of © in the case
of binary trees (K = 2). The details of the computation are somewhat cumbersome,
even in this simplest case, so we only sketch the method. By some extra work, following
and expanding the main steps described here, the interested reader can, theoretically,
compute any specific, finite moment of 6 recursively. Also, the reader gets a quick insight
to the method by which one can derive the moments of © in the case of greater, finite
K values as well. The main motivation for this subsection is to provide the reader with
the basic ideas of the steps of this computation.

Let w(0) =a >0, w(l) =1, and w(k) = 0 for k > 2. (We fix w(1) = 1 for the sake of
computational simplicity, this is a different scaling from the one used in the linear case).
The Malthusian parameter \* is now the positive solution of the equation

AP+ AN —a=0. (37)
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Consider the basic decomposition of O,
O =e V70 +e Vg, . (38)

Let the moment generating function be ¢(u) := E(e~*®). Using (38), computing ¢(u) in
two steps, by first taking conditional expectation with o, and o, remaining fixed, then
expectation with regards to ©; and O,, yields the integral equation

o(u) = / / o(ue™ ") p(ue ™ Te N Y)ae e Y dy da . (39)
o Jo

Now, with two changes of variables, and twice differentiating the equation, one arrives
at the differential equation

p (p(u)* —p(u)  ¢'(u) (¢ (u))?

_ N 40
o) = ) ) ) (40)

where we introduced the shorthand notation

A+ 1
= . 41
e 2 (41)
The boundary values are ¢(0) = 1 and ¢/(0) = —E(©) = —5, where & is easily
computed (recall (27)),
0 a a 1

- _ = 42
" 8/\<)\+a+)\+a)\+1)'A_A* (42)

Introducing g(u) = log ¢(u), equation (40) is equivalent to
g"(u) =cu? ("™ — 1) — cu'g (u) . (43)

We could have computed the moments of © already from (38), but (43) offers a simple
method. From the series expansion of ("),

9 — 1 — ¢'(u)u

g'(0) = c—— = 5(=g"0) + (4 (0)), asu—0.
This way ¢"(0) = 5%(¢'(0))?, and so E(©?) = (1 + 5%)(E(©))*.

As for other moments of ©, one can find a simple recursive formula for the derivatives
of g. The derivation of this recursion is not illuminating, so we just state the result,
namely,

o (eN® g®) gkt

from which all the values of ¢*)(0) can be computed.
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Note that the special choice of a = 2 corresponds to the negative linear, binary case
of Section 4.3.1 (take m = 2 there). Then \* = 1, k = 1, and E(©) = 2. It can be
checked that in this case, equation (40) is solved by ¢(u) = (1+u) "2, so indeed, if a = 2,
then © is of Gamma(1,2) distribution. Also, by checking that no other function of the
form (1 + u)~® satisfies (40), it is verified that no other choice of a allows © to be of a
Gamma distribution, so in all a # 2 cases the structure of the tree is indeed dependent
on O.

In the case where the weight function allows the vertices to have at most K children
for some finite K > 2, these reasonings are very similar. Then, a K*® order differential
equation can be derived for the moment generating function, and again, theoretically,
any moment of © can be computed.

4.4 Limiting objects

For every z € N, we introduce the variables ©,, corresponding to the growth of the
subtree under z. The definition is analogous to © in (31), recall also the notation (6) in
Section 2.1 for subtrees of the random tree,

0, = tlim e N T (1) .
—00

(O refers to Oy, the variable corresponding to the root). Clearly, for every x € N, the
random variables ©, are identically distributed. The basic relation between the different
©, variables in the tree is that for any x € N,

K

0, = Z e—k*(m—fz)@m, 7

=1

which is straightforward from |, (t)] = 1+ 3.5 [T .(t)] -

Now let us ask the following question. Fix a vertex z € A, and at time ¢, draw a
vertex (; uniformly randomly from Y(¢). What is the probability that (; is descendant
of z, so x < ;7 As shown in (44) below, this probability tends to an almost sure limit
A, as t — oo, which can be expressed using the 7 and © random variables,

e—/\*(t—Tm) |Tix (t) | _ e_)‘*” 6x
T(t)| Oy

We can now, for any n € N, define a random measure p,, on the finite set I" = {x
|z| = n}, the n' generation of the full tree, by

pn({2}) == As
This is a probability measure almost surely, which follows from the facts Ay = 1 and

K
Ay =31 Ay
Let H,, denote the entropy of u,, that is

H, =— Z Agzlog A, .

|z[=n

ST & ()] I v
Ao = lim Seayr = T i o

(44)
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4.4.1 A measure as the limiting object for the tree

Let ON denote the set of leaves of the complete tree: ON = {1,2,...,K}>*. The
concatenation xy makes sense for z € AN and y € ON, and then zy € ON. Also, for
x € N and z € ON, we write z < z if dy € ON such that z = zy. For x € N we denote
the set of leaves under « by ON (x) = {z € ON : = < z}.

Let z); denote the first [ letters of the string x, or in different words, let it denote the
ancestor of x on the [-th level of the tree, and let N be equipped with the usual metric

d(l’,y) _ Amax{nEN ST =Yn t : (45)

where 0 < A < 1 is an arbitrary constant. This constant is often chosen to be 1/e,
which makes certain formulae appear simpler. Yet we will not fix the value, so that our
formulae express the dependence of the studied quantities on this arbitrary choice.
With the help of the pu, random limiting measures, we define p on the cylinder sets
ON () of ON by
p(ON(2)) == pn({z}) = Ay, 1f [2] =,

and then we extend p from {ON(z) : € N'} to the sigma-algebra generated (on ON).
Our results concern the properties of this extended random measure pu.

Remark 4.3. The limiting relative weights A, defined in (44) make sense and are in-
teresting in both the discrete and the continuous time setting of the random tree model,
just like the measure p and the entropy H,. The limiting “absolute” weights ©, however,
while playing a central role in our proofs, only make sense in the continuous time setting.
This is the reason why we work with the continuous time setting in this Section of the
thesis.

4.4.2 Dimensions of measures: definitions

For the reader’s convenience, let us review the definitions of local dimension, Hausdorff
dimension and packing dimension of measures. The lower and upper local dimensions of
i at x are defined in [18] (2.15) and (2.16) as

log p(B(x, 7))

dim,  p(x) = llgglf log 7

S 1 B

dimyeeps(z) = limsup M
r—0 logr

where B(z, ) is the ball of radius r centred at . If the lower and upper local dimensions
coincide at some x, they are called the local dimension at x. The Hausdorff and packing
dimensions of p are defined in [18] (10.8) and (10.9) as

dimpgp = sup{s:dimy pu(x) > s for p-almost all x},
dimp = sup{s : dim.p(x) > s for p-almost all z}.

42



The name of these dimensions come from the fact ([18] (10.10) and (10.11)) that
dimgp = inf{dimg F: E is a Borel set with u(E) > 0},
dimp . = inf{dimp E': E is a Borel set with u(E) > 0}.

We are ready to state our results.

4.5 Results

Theorem 4.1. The limiting entropy
1
h:= lim —H,
n—oo M

exists and is constant with probability one.

Theorem 4.2. The Hausdorff dimension dimg p and the packing dimension dimp p of
the measure p are constant and equal with probability one, and h and the dimensions

satisfy the relation
h

—log A’
where A is from (45). Moreover, the local dimension of p equals dimy p = dimp p at
u-almost every point.

dimgy p = dimp p =

Theorem 4.3. Furthermore, an explicit formula for h is given:

K
h=E (Z )\*Tie/\*n> .
=1

This can be computed given the weight function w.

4.6 Proofs of Theorems 4.1 and 4.2
4.6.1 Idea of the proof

The random limiting measure 1 depends on the random growth of the tree. The idea of
the proof is the following: we define a random leaf in the limiting tree according to the
measure g. The way the random leaf is defined is based on a step-by-step construction of
the subsequent generations of the limiting tree, together with a step-by-step construction
of a path from the root to the random leaf. This is done in such a way that a Markov
process appears naturally along this path, and the local dimension of the measure p in
this random point can be computed as an ergodic average. It follows that this average is
constant with probability one, unconditionally. Thus, although the measure depends on
the random tree growth, this ergodic average is constant, and it is the local dimension
of the measure in all the p-typical leafs of the limiting tree. This implies that this
constant is the Hausdorff (and also the packing) dimension of p with probability one.
Some technical difficulty comes from the fact that the state space of the key Markov
process is continuous and non-compact, so to apply ergodic theorems, one has to work
for the existence of the invariant measure (while uniqueness is easy).
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4.6.2 Markov structure of the tree

The content of this short section is mainly repetition of material from [40]. These concepts
and statements allow for a good understanding of the tree structure, on which our main
construction (in Section 4.6.4) relies. Lemma 4.2 will also be used formally in Section 4.6.4
to get an easy proof of the fact that our step-by-step construction of the limiting tree is
equivalent to the original model (Proposition 4.2).

Definition 4.1. We say that a system of random variables (Yy)zenr constitutes a tree-
indexed Markov field if for any x € N, the distribution of the collection of variables
(Y, : z <y), and that of (Y, : © A z), are conditionally independent, given Y.

We state the following:

Lemma 4.2. For each v € N let V, denote the vector V, := (0,,0,). Then the col-
lections of variables A, == (V,: x <vy) and B, = (V,: x & z; 0,) are conditionally
independent, given ©,.

Proof. Recall Remark 4.2, the alternative construction of Y(¢). From that, it is straight-
forward that the collection A, is in fact constructed by the set of independent variables
Ay = (0y: z<y).

Similarly, recall (4.4), and decompose O ), where p(z) is the parent of vertex x,

K K
=S e O Ny = 3 N et o)g,
@p(x) = e p(2)j ~ Tp(x) @p(x)] = e p(2)17p(x) p(x)j @p(x)J .

J=1 J=1

This means that if we take the set of variables B, := (0, : © A y), then B, is constructed
by B, U{6,}.
Given O,, the two collections A, U{O,} and B,U{O,} are conditionally independent,

this way the same is true for A, and B,, so the statement of the lemma follows.
O

Corollary 4.1. The variables (©;)zen constitute a tree-indezed Markov field.
Proof. Direct consequence of Lemma 4.2, since V,, = (0., 0,). O

It is clear that if z A 2’ and 2’ £ x, then ©, and O,/ are independent. Using Lemma
4.2, any moment can be computed in the non-independent case. We give formula for the
covariance here for example:

Corollary 4.2. Let o' = xy for some y € N, then

Cov(0,,0,) =E(e™)Var(0).
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Proof. With the notation |y| = n,

E(0,0,,) =E|06,, e N ()
zi|z|=n
=E(e V) E(02,)+E©L) Y E(e M) E(6,.)
z: |z|=n, 24y
=E (e E (0% + (E(©))’ (1 -E (e ™))
= (E(©))’ + E (e™"™) Var(0) ,

since by the results in Lemma 4.2, O, is independent of (7,, — 7). Since E(0,)E(0,/) =
(E(©))?, the formula for the covariance follows. O

Definition 4.2. We introduce the variables R,, indexed by N'. For the root we leave Ry
undefined. For any other vertex y' which has a parent y, so for any vy’ = yi with i € 1, let
T (T _A*(Tyi_Ty)@ i A i
Ryl:hm|¢y<)’:€ yro_ Y

t—00 |T¢y (t)’ @y Ay ‘

Notice that for z = (i1iz...1,), A, is a telescopic product,

12 12 Lo — RilRilizRiligig R R“Zn . (46)

A, = Ay Ao B B

Equivalently, for |z| = n,
log A, = Z log R, (47)
=1

where recall that z); denotes the first [ letters of the string .
The decomposition described above is of interest due to the following Proposition.

Proposition 4.1. With the variables R, defined as above, let U, := (R, 0,). Given any
sequence (i), , i, € I, the sequence of variables Uy, Us,, Ui iy, Uijigig, - .. constitutes a
Markov chain, which is homogeneous: the transition probabilities from U, to U, depend
on k, but not on y.

Proof. Let y, x, z be vertices in a progeny line, so let x be parent of z, and y be parent
of z. Given O, then, from Corollary 4.1, ©, and ©, are conditionally independent. We
show that so are the pairs (R, ©,) and (R, 0,).

Consider that A ( :
- Tz—Tx ®Z
Rz = e— )
O,
so the pair (R,,©,) is a function of A, (recall the notation in Lemma 4.2). At the same
time,
Ry _ 67)\ (Tyny/)Gy |
O,
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where 3’ is the parent of y, so R, is a function of ©, and the collection (o, : £ v),
which implies that the pair (R,, ©,) is a function of B,.

According to Lemma 4.2, A, and B, are conditionally independent, given O, thus
the proof is complete.

]

4.6.3 A further note on the linear case

For the sake of a short note we briefly return to the case already discussed in Section 4.3.1,
because it is worth pointing out that in the linear case, the Markov chain in Proposition
4.1 in fact consists of independent elements.

In the scope of the present short subsection, following the notation in (36), let the
weight function be given by

wk)=0-8)k+p , keN,

for some 0 < 8 < 1. Recall that in this case, the distribution of © is Gamma(1l, 5). Also,
the growth rate is independent of the structure of the tree, which implies that anything
that can be computed from the discrete time model, is independent of ©. This is in
accordance with the distribution of © being Gamma. To see this connection, consider
for example that

Ay — 6*/\*71@1 _ 6*>‘*Tl@1 _ @1 (48)
1 @@ Zzozl e—A*Tk@k @1 + 220:2 e_)\*(Tk_Tl)@k 3

which shows that A; is a random variable of the form XLW, where X and Y are indepen-
dent. For the ratio to be independent of the denominator (thus A; to be independent of
©p), X has to be of a Gamma distribution. This result is in accordance with the above
considerations.

This all implies that in the linear case, A, is the product of independent variables, see
(46), so indeed, the Markov chain in Proposition 4.1 consists of independent elements.

From this observation it follows that ©, according to the first generation, splits into
the vector

(7 0)

keNy 7’

which is of a Poisson-Dirichlet distribution. For a precise formulation of this fact, see
[12].

4.6.4 Construction of the random leaf

We will now give a different construction of the tree from the ones seen before. Namely,
we construct the system of V,, = (o, ©,) variables starting from the root, and going step-
by-step, from generation to generation. Together with these, we compute the R, and A,
variables, and use them to construct a random path {y,} starting from the root, stepping
from generation to generation, towards the set of leaves of the infinite tree. The y, will
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be chosen from the children of y,,_; in a “size-biased” way. We will use this path in the
proofs of our results. For the sake of simple notation, we suppose for a moment that the
maximum number of children of any vertex is two, that is, K = 2. It is straightforward
to construct the corresponding generations and the random path for any K < oco. For
the rest of this section we treat the distribution of © as known.

Recall that o1, 09, ©1 and O, are independent. Keeping that in mind, using

0= 6_)\*01 (@1 + 6_)\*02@2), (49)

we will consider the conditional joint distribution of (o9, ©1,0s3), given ©. (Of course,
o1 is — conditionally — a deterministic function of these, but we will not use the value.)

Now we can construct the generations, together with the random path y,, in the
following steps.

1. Pick ©p at random, according to its distribution, and fix oy = 0. Also, fix yo = 0.
2. First generation

(a) Pick (09,01, 05) according to their conditional distribution, given Oy

(b) Define Ay = R, = m (which is equal to S_Vk%@ﬂ and happens not

to depend on o1). Also define Ay = Ry = ﬁ.
(¢) Choose y; according to the conditional probabilities P(y; = 1|0, 09, 01,05) =

R1 and P(yl = 2|@,0’2,@1, @2) = RQ.
3. Second generation

(a) Repeat the steps seen before for the progeny of vertex 1, to get (012, O11, O12)
and also Ry; and Rys. This is done only using the information carried by O,
conditionally independently of (©,0,). This conditional independence is the
consequence of Corollary 4.1. Since we already know R;, we can now compute
the values Ay = RiRy; and Ajs = R1Ry».

(b) Independently of the previous steps, use Oy to get (092, O91,09,), R and
Ros. We then also have Ay and Aos.

(c) Choose y, from the children of ¥, according to the conditional distribution
given by the R, variables in the second generation. Namely, if y; = 1,

P(Z/z = 11|Z/1 = 1,012,011, @12) =Ry
P(yz = 12|ZU1 = 1,012,011, 912) = Ris,

and if y; = 2,

P(yz = 21|yl = 2,092,091, @22) = Ry
P(Z/Q = 22|3/1 = 2,099,091, @22) = Ro,

conditionally independently of the entire past of the construction.
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4. n-th generation

(a) Having constructed all the ©, with |z| = n — 1, split these all in the way
above, conditionally independently of each other (and the entire past of the
construction), to get the R, and A, variables in the n — th generation. In

particular,
“N(oz1t+02i) Q
e Al
Ry = .
O,
(b) According to the value of y,,_1, choose y, from its children, according to the
corresponding R, distribution (conditionally independently of the entire past).

Remark 4.4. As mentioned before, our model is intimately related to a branching process,
as discussed in Section 3. In branching processes, the idea of size biasing is not at all
new, as its importance is emphasized e.g. in [31].

Remark 4.5. This step-by-step construction of the tree is similar to the fragmentation
processes discussed e.q. in [6]. There the usage of “randomly tagged branches” based on
size-biased choices is a standard technique, see [6], Section 1.2.3. Note however, that
our step-by-step construction is not a fragmentation process in the classical sense. In
particular, the sequence of measures i, is not Markov: the process also “remembers” the
values ©, which influence how the weight p,({x}) at x is further “fragmented”.

Proposition 4.2. With V, = (0,,0,) as before, the distribution of {V, }zen in the above
construction 1s identical to the distribution in the randomly growing tree model.

Proof. The statement we are proving is about the joint distribution of countably infinitely
many (real-valued) random variables, so this joint distribution can be viewed as a measure
on RN, ! with the o-algebra of measurable sets being the o-algebra generated by cylinder
sets — defined in terms of finitely many of the o, and ©,. So to prove that the two
measures on RY — given by the two constructions — coincide, it is enough to see that they
coincide on such cylinder sets.

In terms of joint distributions: It is enough to see that the distributions of {V,},en
coming from the two constructions have identical finite-dimensional marginals. In par-
ticular, it is enough to show that for every n, the distribution of {Vx}xex\/,mgn in the
above construction is identical to the distribution in the randomly growing tree model.

This is easy to see by induction:

e For n = 0 we have chosen the law of ©y properly by construction, also oy = 0 as it
should be.

e For n = 1, the {V,},ensj=1 are constructed to have the right conditional joint
distribution, given Oy, so the n = 0 statement implies the n = 1 statement. In
particular, the ©, for |z| = 1 are distributed as they should be.

Lwe could write ([0, 00) x [0,00))", but a measure on this can be viewed as a special case of a measure

on RN,
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e For n > 2, the same argument (the construction) gives inductively that the joint
distribution of the {V, }.ew is what it should be, for any family W of z-es which
consists of a vertex and its children. However, the construction also ensures the
conditional independence of {V},},~, and {V.},x. given ©,, as in Lemma 4.2. This,
together with the joint distributions of the {V,},cw (with W as above) already
characterizes the joint distribution of {V, }.c N Jz|<n-

[]

From now on, we will use the alternative construction of the tree in our discussion, so
Proposition 4.2 is used all the time in the proof, but this will not be formally mentioned.

Definition 4.3. Denote by T the o-algebra generated by {0, | © € N'}, which contains
the full tree evolution.

Note that for any x € N, O, is measurable with respect to T, so T is also the o-
algebra generated by {o,,0, | © € N}, namely all the data about the tree — but not
about the random leaf — during the parallel construction of the tree and the random leaf
just presented.

The usefulness of the random leaf we constructed is shown by the following:

Lemma 4.3. Conditioned on Y, the conditional distribution of the leaf lim,, y,, is exactly
the measure p. Similarly, the conditional distribution of y, is exactly ji,.

Proof. The second statement can be seen by induction: pg obviously gives weight 1 to
the single point () = y,. Later, by construction of y, 1, for any z € N with |z| = n
and any i € I we have P(y,+1 = i |y, = x,T) = Ry, so if we assume inductively that
Py, =x|7T) = p({z}) = A;, then P(ypy1 = i | 1) = Ay Ry = Ayi = i1 ({2d}) for
any |zi| = n+ 1, so y,y1 is indeed distributed according to fi,41-

The first statement is an immediate consequence of the second, since for any cylinder
set ON (), if |z|] = n, we have P(yo € ON(2)|T) = Py, = z|T) = pu,({z}) =
H(ON (x). 0

Corollary 4.3. Conditioned on the tree, the conditional expectation of —logA,, is ex-
actly H,.

Proof. Indeed, by the above lemma,

E(—log Ay, |T) ==Y Py =x|N)logA, = = > p({z})log A, =

|z|=n |z[=n

= — Z A,log A, = H,.

|z|=n
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4.6.5 Markov processes along the random path

The key to the proof is the following easy observation:

Proposition 4.3. The stochastic process X,, = ©,, (n =10,1,2,...) is a homogeneous
Markov process. By “homogeneous” we mean that the transition kernel does not depend
on n.

Proof. This is clear from the construction in Section 4.6.4. Indeed, when constructing
©,,, only the value of ©,, , is used, and the construction is the same on every level. [

The reason to construct in Section 4.6.4 the entire tree of pairs (0, A, ) step by step —
and not just the random path {y,} on an already existing tree — was exactly to make the
Markov property of ©,, obvious. A direct proof without the step-by-step construction
would also not be hard, but according to our taste, the underlying phenomena are more
transparent this way.

Based on this proposition and equation (47), the proof of our main results will be
a reference to an appropriate ergodic theorem. However, there are two issues to deal
with before. First, the state space of our Markov processes is continuous and even non-
compact, so the unique existence of the invariant measure needs to be discussed. This
is done in the next proposition. Second, the quantity —log R, , of which we want to
calculate the ergodic average, is not an observable on the state space of X,,, so this state
space needs to be extended. This obvious extension will be done in Corollary 4.4.

Before starting the main arguments, let us formulate, as a lemma, an easy observation
about the distribution of ©. We will use this in the arguments both for the uniqueness
and the existence of the invariant measure of X,,. From now on, we will use the notation
R* for the set of positive real numbers:

R* = (0, 00).

It is important that 0 is not included, e.g. when we speak of functions being continuous
or nonzero on R7.

Lemma 4.4. O is absolutely continuous w.r.t. Lebesgue measure on RY, with a density
function m which is continuous and strictly positive on RT.

Proof. Start from the decomposition (4.4). It shows that © is of the form © = e 10
where o7 is independent of @, which immediately implies that © must be equivalent
to Lebesgue measure on the interval from zero to its maximal value. On the other
hand, © > e 2710, + e N (1+92)Q, implies that © is not bounded, since ©; and O,
are independent and distributed as ©, and their prefactors can be arbitrarily close to
1. The same decomposition, applied once again, also implies that the density = is even
a continuous function (more precisely, can be chosen to be conti{l\uous), since © being

absolutely continuous w.r.t. Lebesgue measure implies that so is © (since K < o), the
density of which is once again smoothened by © = e=*"10. m
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For the discussion of the invariant measures, let P denote the transition kernel of X,
— that is, P(t) is the conditional distribution of X,,,; under the condition X,, = t (for
every t € RT). We also use it as the operator acting on measures by nP = [, P(t) dn(t).

Proposition 4.4. The transition kernel P of the Markov process X,, = ©,, has ezactly
one 1mvariant measure.

Proof. Recall that the decomposition (4.4) is the key relation between the ©,-es of the
different generations, on which the construction of X,, — and thus every property of the
transition kernel — is based.

The key observation is that P(t) is equivalent to Lebesgue measure (on R, of course)
for every t € R*. This (and more) is explicitly stated and proven in Lemma 4.12.
However, since we feel that this statement is really intuitive, let us give a rough reasoning
here as well.

First, Lemma 4.4 implies that the distribution of © is equivalent to Lebesgue measure
on R*. Recall now the construction in Section 4.6.4, the essence of which is that P(t) is
the conditional distribution of ©" under the condition © = ¢, where ©’ is a random choice
from the set {O1,...,0x}. Look again at the relation between © and {©q,...,0k},
which is the decomposition (4.4), or the simplified form for K = 2, which is (49). It
shows that given any value of ¢, the condition © =t doesn’t rule out any of the possible
values of a ©; with 1 < ¢ < K. Also, the conditioning on ©® = ¢ doesn’t spoil the
absolute continuity of ©;, and the method of randomly choosing ©’ from {O,..., Ok}
also preserves absolute continuity. With this, the key observation is shown. Again, see
Lemma 4.12 for a detailed proof.

This observation about P(t) implies that for any measure n on RT, the first iterate
nP is already equivalent to Lebesgue measure. This in turn implies that any invariant
measure 77 = nP is equivalent to Lebesgue measure, so any two invariant measures are
equivalent.

Suppose now indirectly that there exist two different invariant probability measures.
Then two different extremal invariant probability measures also have to exist. But two
different extremal invariant probability measures must be mutually singular, which con-
tradicts the previous argument. Thus there is at most one invariant probability measure.

The existence follows from Lemma 4.6 and Lemma 4.5. Indeed, the limiting measure
v of Lemma 4.5 has to be invariant by Lemma 4.6. [

Lemma 4.5. The sequence of random variables X,, = ©,, s weakly convergent to some
measure v on RT.

To keep our arguments easy to follow, we delay the proof to Section 4.7.2.
Lemma 4.6. P is continuous with respect to weak convergence of measures.
The proof is delayed to Section 4.7.3.

Corollary 4.4. The stochastic process Y, = (©,,, R,,) (n =1,2,...) is a homogeneous
Markov process, for which the transition kernel has exactly one invariant measure.
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Proof. Notice that during the construction of the tree in Section 4.6.4, R, is constructed
by using only the value of ©,, | (not even R, ), in a time-homogeneous way. Thus Y, is
really homogeneous Markov. Let P denote the transition kernel. From the construction,
AP depends only on the first marginal of 7, and on this marginal it acts exactly like P.
So for any measure © with first marginal v, 7 := 0P is invariant by the invariance of v
under P. The uniqueness is obvious from the uniqueness of v. O]

Now we are ready to apply an ergodic theorem on the sequence — log Iz, to get the
central technical result, from which our first two theorems easily follow.

Corollary 4.5. The limit h := — lim,,_, % log A, exists and is constant with probability
one.

Proof. —log R,, is an observable on the state space of Y,,, and h is exactly the ergodic
average of this observable by (47). So it is guaranteed to be constant by the unique
existence of the invariant measure and Theorem 1.1 in Chapter X of [13]. We give the
details of the (standard) argument now.

Theorem 1.1 in Chapter X of [13] states that “If {z,,,n > 0} is a stationary Markov
process, and if z is an invariant random variable, then z is measurable on the sample
space of xy”. To formally apply this theorem to our process, we first need to construct
a stationary version of Y,. Namely, let Y,, be the Markov process with generator P
started from Yj which is distributed according to the unique invariant measure . For
this process, the ergodic average of an observable, being an invariant random variable
(see [13], Chapter X for the definition), is by the above theorem measurable on the state
space — that is, constant with probability one, conditioned on the initial value (more
precisely, for -a.e.initial value). But in our case, this constant is indeed independent
of the initial value — actually, it is constant for every initial value, since P brings any
measure (e.g. a point measure concentrated on any point) into a measure equivalent with
v. Now notice that the property that the ergodic average is the same constant with
probability one, independently of the initial state, is a property of the transition kernel
P only (and not of Y}, as a stochastic process), so it also holds for the process Y,,. O

Remember that %Hn is a conditional expectation of —%log Ay, by Corollary 4.3.
So since we have just shown the almost sure convergence of —%log Ay, the almost
sure convergence of %Hn follows, if we have e.g. dominated convergence. This will be
guaranteed by the following lemma.

Lemma 4.7. Let i be any Borel probability measure on ON', with K < oco. Using the
notation in Section 4.4.1, for every x € ON let

fule) = = log fHONT ().

Then f := sup,, f, is integrable with respect to the measure fi.

The proof is delayed to Section 4.7.1. Now we are ready to prove the main results of
Section 4.
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Proof of Theorem 4.1. For every x € ON let f,(z) = — = log pn({x[n}) = — % log (0N (z]y,)).
By Lemma 4.3, Corollary 4.5 states exactly that for almost every realization of the tree,
fn(x) converges p-almost surely to h.

Now divide the statement of Corollary 4.3 by n to get

1 1 1 , N Nl
=B (posa,r) = [ o) @ = [ odute)

n

We can now apply the dominated convergence theorem to finish the proof, since we can
use the supremum as an integrable dominating function, see Lemma 4.7. O]

Proof of Theorem 4.2. We first show the second statement of the theorem by showing
that the local dimension of p at the leaf lim,, y,, is exactly 712g 5 where h is from Corol-
lary 4.5. Let B(xz,r) denote the r-neighbourhood of the point 2z € N w.r.t. the metric
(45). For r = A", this neighbourhood is formed exactly by the descendants of z|,, so

B(x,A™) = ON(x|,). The p-measure of this set is

p(B(z, A")) = p(ON (z[n)) = pn({zln}) = log A,

while the logarithm of the diameter of this set is nlog A. Thus the local dimension of p
at the leaf x is

| (B AM) L —rlog Ay,
dlnlloc M(I) - Jinolo nlogA o nargo — logA

(if this limit exists), by the definition in (46) and (46).
Applying that to x = lim,, y,,, Lemma 4.3 and Corollary 4.5 say that this limit indeed
exists and is equal to #gl\ for p-almost every x, which is what we wanted to show.
The first statement of the theorem in now an immediate consequence of the definitions
of the Hausdorff and packing dimension of a measure in (46) and (46).

[]

4.7 Proofs of auxiliary lemmas
4.7.1 The lemma for dominated convergence of the entropies

In this section we prove Lemma 4.7.

Proof of Lemma 4.7. For arbitrary M < oo, let us define the set
n Lo _ “n
By = o fule) 2 MYy = {o s ——log (0N (2],)) = M} = {x : (0N (al.)) < e ™},

Since f, takes constant values on the K™ cylinder sets, we have

AFD) < Kre™ = (Ke ™)". (50)
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Now we define

Fyi={x: fo) > M} = J{z: fule) > M} C | B

By (50), for M > log(2K),

o0

i(Fy) <) (Ke™)" < 2Ke™™.
n=1
Thus, since f > 0,

/f(:v)d/l(:c) <N Ma({z: M~ 1< f(z) < M}) < .

M=1

4.7.2 Limiting distribution of ©,, along the random path

In this section we prove Lemma 4.5. We begin with three lemmas of elementary proba-
bility whose statements do not rely on the setting of the present dissertation.

The first one is a trivial generalization of the ordinary weak law of large numbers.
We could call it “Weak law of large numbers with arbitrary weights”. For this purpose,
we will consider a sequence of probability vectors {p"}> ;, where, again, each p™ is a
probability vector p" = (pf,p5,...,py, ). We plan to calculate weighted averages of
independent random variables with weight vectors p™. We expect such an average to be
close to the expectation, if every term has a sufficiently small weight. So we will say that
the sequence {p"}72, is proper if

lim max{p} : 1 <j < N,} =0.

n—oo

Lemma 4.8. Let vy be a probability distribution on R with finite expectation m. Let
{p"}o21 be a proper sequence of weight vectors, and let v, be the distribution of

Ny,
> 15z
j=1
where Zy, Zsy, ..., Zn, are independent random variables with distribution vy. Then

U, = m.

Note that this is the usual weak law if p' = L (j =1,...,n).

Proof. The proof is trivial following the standard proof of the weak law with characteristic
functions. O
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Now we turn to a lemma which could be called “size-biased sampling with arbitrary
extra weights”. For this purpose, let p = (p1,po, ..., pn) be a probability vector, and let
Zy,Zs, ..., Zy be random variables on R* (meaning P(Z; > 0) = 1). We will say that

the random variable V' is the size-biased random choice from 7, Zs, ..., Zy with extra
weights p1, ps, ..., pn, if it is constructed the following way:
1. Generate a realization of (Z1, Zs, ..., Zy), and call it (21, 29,..., 2n).

2. Having that, choose a random integer J from the index set {1,2,..., N} with the

weight
bjzj

N
2 j=1D5%

given to each j.
3. Set V = z;.

Note that this is the usual size-biased random choice if all the p; are equal. Our lemma
states that this size-biased random choice with extra weights behaves just like the ordi-
nary one, provided that every weight is small.

To state the lemma, let 1) be a probability distribution on R with finite expectation
m. We will say that the measure v is the size-biased version of vy, if it is absolutely

continuous with respect to vy, and the density is p(t) = +t. In other words, v(A) =

L [ tdu(t).

Lemma 4.9. Let vy be a probability distribution on RY with finite expectation m. Let
{p"}52, be a proper sequence of weight vectors, and (for each n) let Z¢', Z3, ..., Zy; be
independent random variables with distribution vy. Let V, be the random choice from
21,2y, ... Ly with extra weights pt,py, ..., py. . Let v be the size-biased version of vy.
Then

V,=v.

Proof. Let F' denote the cumulative distribution function of v, that is, F'(t) = v([0,¢]).
Let F,, denote the cumulative distribution function of V,,. For some fixed ¢, we write it
in the form

Fu(t) = E(P(Va <t [ {Z]'}]). (51)
The conditional probability inside is just the weight of j-s with Z; <, so
Nn T n n
ijlijj H(Zj <t)
Nn n n ’
2P

According to Lemma 4.8 the denominator converges weakly (and thus, in probability) to
E(Z}) = m > 0 as n — oo. Similarly, the numerator converges in probability to

P(V, <t [{Z}}m) =

B(ZM(20 < 1)) :/ FIL(E < #) dup() = mw((0,4))

R+
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This implies that the quotient converges weakly to v([0,t]) = F(t). Since this quotient
is a conditional probability, it is obviously bounded by 1, so (51) implies that F,(t) —
F(t). O

The following lemma is just a re-statement of the previous one. This is the form that
we will use.

Lemma 4.10. Let vy be a probability distribution on Rt with finite expectation, and let
v be its size-biased version. Let ¢ be a bounded continuous function on R*. Then for
every € > 0 there exists a 0 > 0 such that for any probability vector (p1, pa, - .., pN) which
satisfies that

max{p,; : 1 <j <N} <4,

if Z1, 2, ..., Zn are independent with distribution vy, then the size-biased random choice
(called V') from Zy, Zs, ..., Zn with extra weights py,ps,...,pn Satisfies

‘E(so(V)) - [t du(t)\ <e

Before proving Lemma 4.5, we need one more tiny statement about the structure of
the growing tree.

Lemma 4.11. For any vertex v € N, let

T, =e ™, (52)
and for every x with |x| =n let
1;
Pr = —=——— for|z|=n. (53)
2 ty=n Ty

Then the sequence p™™* := max{p, : |x| = n} converges to zero in probability.

7, max

Proof. We prove the stronger statement that p
one. We use the form

converges to zero with probability

pn,max —

We show that the numerator converges to zero with probability one, while the denomi-
nator converges to a positive limit with probability one.

(54)

1. If the numerator does not converge to zero, then there is some € > 0 and there

are infinitely many vertices + € N with T, > e. Then, for all these z we have
Ty < TF 1= _;\O*gg, so infinitely many vertices are born within the finite time 7*.

This is known to have probability zero — see comment at (3).
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2. Tterating the decomposition of ©, we get

0=> T.0,. (55)

|z|=n

Let ¥, denote the o-algebra generated by {o, : x € N,|z| < n} — that is, the
complete history of the tree growth up to the n-th level. Similarly, let > denote the
o-algebra generated by {0, : v € N'}. Clearly ¥, C ¥,,1, ¥ is generated by U, %,,,
and © is Y-measurable. So Lévy’s ‘upward’ theorem ensures that E(© | 3,,) — ©
with probability one. However, if |z| = n, then O, is independent of ¥,,, while T,
is ¥,-measurable, so (55) implies that

E©|%,) =) T.E0,=E0 ) T,

|z|=n |z|=n.

so with probability one the denominator of (54) converges to ps # 0.

Now we can complete the goal of this subsection:

Proof of Lemma 4.5. Actually we give the limit explicitly. Let v be the measure on R™
with density function czm(z), where () is the density of ©, and ¢ = g5 is a normalizing
constant. We will show that

X, = (56)

Let us look directly at X,, = ©,,, for some fixed n. This can also be constructed in the
following way:

1. Generate the birth times 7, for all vertices  with |z| = n (that is, on the n-th level
of the tree). This defines the values T, = e~ ™ || = n. For better transparency,
let us normalize these values to get a probability distribution on the n-th level of
the tree, as before, see (53) for the definition of p,.

2. Also generate the random variables O, for |z| = n, which are independent of the
Pz

3. Now ¥, is chosen from the points |x| = n according to the distribution y,, so the
weight given to some x is

So, having the values p, fixed, the value X,, = ©,, is the result of a size-biased sampling
from the independent random variables ©,, |z| = n, with additional weights p, — just
like in the context of Lemma 4.9 and Lemma 4.10.
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Now we can prove (56). Let ¢ be a fixed bounded continuous function on R, let M,
be an upper bound of |¢|, and let my, = [, ¢ dv (which satisfies [m,| < M,). Let € > 0
be arbitrary.

Choose § > 0 according to Lemma 4.10 so that if all the p, on some level |z| = n are
at most 9, then

E (0(X2) | {pe}) —my| <e.

Lemma 4.11 implies that there exists an ngy such that for all n > ng,

P(max{p, : |z] =n} >J) <

oM,

Let €, 5 denote the event that max{p, : |x| =n} <. For n > ny we get

E (¢ m¢‘</‘E —my | {p.})|dP =

= [ B —m ) 4P+ [ [B(e(X) —m, | )| 0P <

n,d Qn,5

< 2M,P (0 ;) +/ edP <e+e=2e.
Qns

4.7.3 Weak continuity of the transition kernel
This section is devoted to the proof of Lemma 4.6.

Proof of Lemma 4 6. We first show in Lemma 4.12 that the transition kernel P can be
written as (nP)(B) =[5+ [ k(t, s) ds dn(t) where the kernel function k(t, s) is continuous
in the first Varlable (actually 1t is continuous in both variables). Lemma 4.13 — which is
a pure probability statement — says that such a kernel is continuous with respect to weak
convergence of measures. O

In the lemma, we show a little more than what is needed for the above proof. In
particular, we also show that the kernel function k(¢,s) is nowhere zero on Rt x R,
because this is used in the proof of Proposition 4.4.

Lemma 4.12. The transition kernel P can be written as (nP)(B fR+ fB (t,s)dsdt
where the kernel function k(t,s) is continuous in both variables (m its domain (t,s) €
R* x R*Y), and strictly positive.

Proof. For the time of the proof, let ©® and ©' denote two consecutive values of the
process, say © := X,, = 0,,, 0" = X,,; = 0, .. So the kernel function k(t, s) is just
the conditional density of © (as a function of s), under the condition © = t. So

k(t,s) = 29



where p(t, s) is the joint density of the pair (©,0’), and 7 (t) is its first marginal — that
is, the density of ©.

We know from Lemma 4.4 that © is indeed absolutely continuous w.r.t. Lebesgue
measure, and the density 7 is continuous and nonzero on R*. Knowing this, we now
show that p(t, s) is also continuous in both variables and nonzero on R™ x R*, which
completes the proof.

We restrict to the case K = 2. The case of a general K < oo causes no additional dif-
ficulty other than messy notation. Following the construction of the tree in Section 4.6.4,
we start with o1, 09,01, 0, independent, with o; being exponentially distributed with
parameter w(i — 1)/A\* and ©; being distributed as © (i = 1,2). We introduce the
temporary notation S; = e~ % and denote its density by g;. Explicit calculation gives
that

1
gi(u) = ——u ~ 111(0,1)(“): (57)

of which we will only use that u g;(u) is bounded.
Denote the joint density of (S7, Ss, ©1,05) by

fur,ug, tr,t2) = gi(ur)ga(ug)m(ty)m(ts) .

We define
O = 5101 + 515,05 = S1(01 + 520,) .

To get the appropriate joint distributions, in the probability vector (S, S, ©1,02) we
replace S; by O, so let us denote the joint density of (0,Ss,©1,05) by f. The density
transformation formula gives

~ 1 t 1 t t
t

t t1,10) = t1,10) = t to) .
f( , U2, 11, 2) t1+u2t2f(t1+u2t2’u27 1, 2) t1+u2t291(t1+u2t2)g2(u2)ﬂ( 1)7T( 2)

According to the construction, ©’ is chosen to be either ©; or ©,, with conditional
probabilities (given (53,01, 05) and conditionally independently of ©)

O,
PO =065%,0,,0y) = ————
( 1’ 2, VY1, 2) @1 +52@27

/ 52@2
PO =06,/5,,0,05) = ————.
( 2’ 2, VY1, 2) @1 +S2@2

So the joint density of (©,0’) is

p(t,s) = // ;f(tu%S?tQ) dty dU2+// ﬂf(uu%tl?s) dt; duy =
R R

28+U2t2 2t1+u25

= / fl(tasvu2at2)dt2du2+/ falt, s, us, 1) dty dusy
RQ RQ

All there is left is to show that both integrals on the right hand side are continuous and
nonzero for (¢,s) € R x RT. Now the integrands f; and f, are not exactly continuous,
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but they are continuous on their supports. > On the other hand, for every (¢,s) € RT xR
the support of each integrand is a nice set (described in the footnote) with a boundary
of Lebesgue measure zero. That is, for every (to, so) € RT x RY,

fi(t, s, us, ts) (t,5) 2 Uig,so0) fi(to, 80, us, to) for Lebesgue-a.e. (ug,ty) € R?.

To get the desired continuity of the first integral by the Lebesgue dominated convergence
theorem, we only need to find an integrable (in (ug,ts)) uniform (in (¢, s) near (g, So))
upper bound for

f(t 5) s 1 t t
y S, U2, = "
! 272 S+ usto t s +u2t291 S + ugls

)ga(uz)m(s)m(t2) -

t
s+uate

The first factor is at most 1, and the product
is bounded due to (57). So we have

91(55u7;) is bounded because u g (u)

Filt 1) < Cm(s)galua)r(ts) < Co- + 1)((s) + Dgalus)r(ts)

if (¢, s) is close enough to (to, so), since $7(s) is continuous in (fo, s9). This upper bound
is clearly integrable in (us,t5), so the dominated convergence theorem ensures that the
integral is also continuous.

The second integral in (58) can be shown to be continuous in exactly the same way.
Thus the continuity of k(t, s) is proven.

To get that p(t, s) (and thus k(¢,s)) is strictly positive on RT x R*, we only need to
note that the support of the integrand is nonempty for every (¢,s) € R* x R in both
integrals on the right hand side of (58). This comes again from (49), which shows that
any pair of positive values is possible for (0,0;) (in case of the first integrand) or for
(0, 0,) (in case of the second integrand). (See the footnote 2 for explicit formulae.) The
integrands are of course also non-negative, so both integrals are positive. O]

Lemma 4.13. Let k : RT x Rt — [0,00) be a function continuous in the first variable,
such that for every t € RT the function k(t,.) is a probability density on Rt — that is,
fR+ k(t,s)ds = 1. Let the operator P be defined on Borel probability measures of R™ by

aP)B) = [ [ k.5 dsanty

for every Borel probability measure n on R™ and every Borel set B C R™. Then P is
continuous with respect to weak convergence of measures.

This lemma is an easy consequence of the following:

2The supports of the two integrands are actually not the same. Both of them are characterized by
the system of inequalities {0 < ¢1,t2; 0 < ug < 1; 0 < < 1}, but with the choice s = t; or s = o,
respectively.

_t
t1tuats

60



Lemma 4.14. Let k: RT x Rt — [0,00) be a function as in Lemma 4.13, and for every
t € RT let K; denote the measure on R™ with density k(t,.). Then if t,, is a sequence in
R* converging to t, then K, converges to K; weakly.

Proof. By assumption, {k(t,,.)}52, is a sequence of density functions converging point-
wise to the density function k(¢,.). This implies weak convergence of the corresponding
measures through the Fatou lemma: for any Borel set B C R

Fatou
liminf K} (B) = liminf/ k(t,,s)ds > /liminfk(tn,s) ds = / k(t,s)ds = Ky(B),
B B B

n—o0 n—o0 n—oo

similarly
liminf K (B¢) > K(B°),

n—oo

which implies
limsup Ky, (B) =1 — liminf K, (B°) <1 — K,(B°) = Ky(B) .

n—00 n—00

These together give
K, (B) — K(B).
O

Remark 4.6. As one of the opponents of this dissertation, Dr. Tamds F. Mori pointed
out, Lemma 4.14 is in fact a consequence of the commonly known theorem which states
that the pointwise convergence of the density functions implies the convergence in total
variation of the according distributions, which in turn implies weak convergence. This
theorem is usually cited as that of Scheffé (see [43]), although it can already be found in
the work of Frigyes Riesz, from twenty years before (see [27]).

Proof of Lemma 4.13. Let ¢ : RT™ — R be bounded and continuous and let 7, be a
sequence of measures on R* converging weakly to 7. By the definition of P,

/Rfd(""P ) = /R+ Bt $)(5) d(a(t) x Leb(s)) =

= [ e as] ano,

Po(t) = /R+ k(t,s)p(s)ds

is obviously bounded, and also continuous: this is exactly the statement of Lemma 4.14.
But then the weak convergence of 7, to n implies that

| ewan [ e,

The function

R+
so we have
[ edmpr> [ ewane = [ cdup)
R+ R+ R+
for every bounded continuous ¢, which is exactly what we want to prove. O]
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4.8 Proof of Theorem 4.3: computation of the entropy

This section consists of the proof of Theorem 4.3, the explicit calculation for the entropy.

Proof of Theorem 4.3. We know that %Hn = —% Z|x|=n A, log A, converges almost surely
to some constant h, and this constant is equal to the limit of the expected values. For
this section we use the shorthand notation already introduced in (52),

T,=e N, (58)
To compute h, first observe that
E) A0log(A0)=E () ©A,logA, | +E [ (Blog®) Y A, | =
|z|=n |z|=n |z|=n.

E|0) AlogA, | +E(©log®),

|z|=n

where we have used that Z . Az =1 by definition.
Next we observe that on the other hand, the same expression can be written as

E ) A,0log(A,0)=E > T.0,log(T,0,) =

|z|=n |z|=n

> 0.Tlog(T,) | +E [ Y T.0,l0g®, | =

|z|=n |z|=n

> (BO.)E(T.logT,) + Y  E(T.)E(O,log®,) =

|z|=n |z|=n

(EO)E ) (TulogT,) + E(Olog®)E | > T, |,

|z[=n |z|=n

where we have used that for any x € N, O, and 7, are independent. Recall that

Since (32) implies that E (©log ©) < oo, comparing the two formulae gives the con-
clusion

E|0) AdogA, | =EO)E (Y T,logT, |. (59)

|z|=n |z|=n
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We compute the right-hand side with an induction,

A =E ) TlogT,| =E| > Z Jog T, | =

jo|=n lyl=n—1i=1
K
(Eze—ﬂw—m) E| ) T,logT,| +
i=1 lyl=n—1

K
Z T, | E (Ze i) Jog e Tyi_Ty)
lyl=n—1 =1
A1+ E (anogﬂ) :

i=1
SO

K
A, =nE (Zﬂlogn> .

i=1
Now write this back to (59) to get

E (@%Hn) = (EO)E (- ﬁ:TilogTi) .

Since lim %Hn = h almost surely and EO < oo, we can apply the dominated conver-
gence theorem if we check that %Hn is bounded. This follows from the standard upper
bound for entropy of measures on the finite set {x € ON : |x| = n}, which has K™
elements, coming from Jensen’s inequality:

== Y i) log pu({}) = / 1ogmdun<x> e

|z|=n {z€dN:|z|= n}
1
<log / dpn(z) = log tn({x}) =log K" = nlog K,
() ) ey
{z€dN:|z|=n}

SO %Hn < log K. Now dominated convergence gives

K
=E (— Zﬂlogﬂ) .
i=1
Recalling (58), the proof of the theorem is complete. ]

Remark 4.7. This value can be explicitly calculated, as soon as the weight function is
gien, since the 7; variables are the sum of independent, exponentially distributed random

variables with parameters (w(j));;t. Alternatively, with the function p defined in (3) in
Section 2.2.2,

d)\ Ia=x’
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A Figures

The following figures visualize the difference in the random tree after 1000 discrete time
steps, depending on the choice of the weight function w. From a repellent case (w(k) =
k%l), through the constant, square root and linear cases, we gradually reach the extremely
preferential case (w(k) = (k+1)%/2), the last choice producing the "blow-up” phenomenon
studied in [36].

The simulation was written in Python and the resulting data set is visualized through
a certain spring-embedded algorithm in Cytoscape, both softwares are freeware (the

layout used inside Cytoscape is called yFiles:0Organic).

Figure 1: w(k) = 125, 1000 discrete time steps
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Figure 2: w(k) = 1, 1000 discrete time steps

Figure 3: w(k) = vk + 1, 1000 discrete time steps
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Figure 5: w(k) = (k + 1)%?2, 1000 discrete time steps
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