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1 Introduction

1.1 Model class and context

In my PhD thesis I investigate the asymptotic properties of a random tree growth model
which generalizes the basic concept of preferential attachment.

In this family of tree growth models, the tree stems from a root in the beginning, and
vertices are added one at a time, the new vertex always attaching to exactly one already
existing vertex. The rule by which the new vertex chooses its “parent”, is dependent
on the degree distribution apparent in the tree at the time the vertex is born. This
dependence on the degree structure is characterised by a weight function w : N → R+,
which function is the parameter of the model.

The models can be either in discrete time, when a vertex is born in every second,
or in continuous time, then birth times are random. For the problems we discuss, these
two versions are equivalent and can be translated into each other. The classical models
and results of the area use the discrete time setting. However, for the proofs we give,
the continuous-time version is much more natural and convenient, so this is what we will
use.

One of the famous models, a realization of preferential attachment, is the Barabási -
Albert graph [3], where the random choice of the parent for the new vertex is made using
probabilities exactly proportional to the degree of the existing vertices. The tree case of
this model corresponds to the the special case of the model considered in this dissertation,
namely, when w is chosen to be linear. The Barabási - Albert graph reproduces certain
phenomena observed in real-world networks, the power-law decay of the degree sequence,
for example. This was proved in a mathematically precise way in Bollobás et al. [8]
and, independently, in Móri [32]. In these papers, the techniques strongly depend on
martingales that are apparent in the system only in the linear case.

The concept of preferential attachment generally means that the weight function w
is an increasing function. In the family of models that we are interested in, this is not
necessarily true. General weight functions are considered in the papers of Krapivsky and
Redner [25] and [26], where w(k) ∼ kγ, and non-rigorous results are obtained, showing
the different behaviour for γ > 1 and γ ≤ 1. In the first region a single dominant vertex
appears which is linked to almost every other vertex, the others having only finite degree.
The weight functions we consider in the present dissertation are such that the model does
not “blow up” this way, our class includes the second regime γ ≤ 1 mentioned above.

In the work of Dereich and Mörters [11], the authors take a closer look at the tem-
poral evolution of the degrees of individual vertices, in the same sublinear preferential
attachment case as we do. This paper refers to our work [41]. Certain random recursive
trees and random plane-oriented trees similar to our setting have also been studied before
in Smythe and Mahmoud [44].

Population growth models, studied excessively in the theory of branching processes
(see e.g. Jagers [22]), are intimately related to our model. This connection is the basis
for many of the proofs in the present dissertation.
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Tree growth processes based on fragmentation processes are closely related to our
investigation of the global properties of the model. Limiting objects called “random
real trees” and “continuum random trees” were introduced, to which the evolving trees
converge, after an appropriate rescaling of the distances on the tree. Much of the structure
of these limiting objects is understood, see e.g. Haas, Miermont et al. [19, 20, 21].

Our concept of the limiting measure µ in Section 4 is different from these. It is
a measure on the set of leaves of the infinite complete tree (with each vertex having
exactly K children), which is a metric space, but the metric structure is trivial: it is
not a result of any spatial scaling, and it carries no information about the tree growth
process. On the other hand, the weights given by µ are a result of an appropriate
rescaling of the tree size, where size means cardinality. In short, we are really interested
in the asymptotic weight distribution, and not the asymptotic metric structure. This
asymptotic weight distribution is also studied in the Physics literature, see e.g. Berestycki
[5], where a quantity analogous to the local dimension is calculated for a continuous time
fragmentation process.

Similarly, in the limiting continuous trees obtained in Haas, Miermont et al. [19, 20, 21]
by a spatial rescaling of the evolving tree, the metric structure is of main interest, and the
Hausdorff dimension and Hausdorff measure of sets are the natural questions to ask, see
Duquesne and Le Gall [15, 16]. However, in our model it is not the set, but the measure
which captures the long-term structure of the tree well, and of which the dimension is
interesting.

The continuous time version of our tree growth process can also be translated into
a branching random walk, with time turning into displacement. Then the asymptotic
growth can be described analogously, see the Biggins theorem in [7] or Lyons [30]. How-
ever, with that point of view, the natural questions about the limiting structure are quite
different.

1.2 Structure of the thesis

The thesis is divided into three main sections in which the definition of the model, and
the analysis of two families of properties of the random tree growth model are provided.
The rest of this document is also divided into three sections, accordingly.

In Section 3 we analyse local properties of the tree: we focus on the neighborhood
of the typical vertex (e.g. sampled uniformly randomly after a long time) of the random
tree. This section is based on [41], joint work with Benedek Valkó and Bálint Tóth, and
[40], joint work with Bálint Tóth.

The topic of Section 4 is the analysis of the global properties of the model, these
capture phenomena observable by looking at the whole tree in the limit (e.g. asymptotic
speed of tree growth in the continuous time setting, and the “limiting success level” of a
fixed vertex in the limit). This section is based on [42], joint work with Imre Péter Tóth.

In this document we begin both Section 3 and 4 with a short résumé of the context,
continue with the description of the scope of the analyses, and we precisely state the
results of the PhD thesis. We also hint at the methods of our proofs.
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2 Terminology, notation and the model

2.1 Vertices, individuals, trees

We consider rooted ordered trees, which are also called family trees or rooted planar trees
in the literature.

In order to refer to these trees it is convenient to use genealogical phrasing. The
tree is thus regarded as the coding of the evolution of a population stemming from one
individual, the root of the tree, whose “children” form the “first generation”, these are
the vertices connected directly to the root. In general, the edges of the tree represent
parent-child relations, the parent always being the one closer to the root. The birth
order between brothers is also taken into account, this is represented by the tree being
an ordered tree (planar tree).

Let us fix a subset of positive integers, I, and let us label the vertices of a rooted
ordered tree using the elements of

N :=
∞∪
n=0

In, where I0 := {∅} . (1)

We will consider slightly different cases of the model in Sections 3 and 4, and define
I in the two sections accordingly, as follows.

• Throughout Section 3 we choose I = Z+, this corresponds to the fact that any
vertex can have any number of children.

• In Section 4, we will fix a positive integer K ∈ N, ;K ≥ 2, and choose I :=
{1, 2, . . . , K}. This means that we restrict the weight function in such a way that
the vertices can have at most K number of children.

In our notation ∅ denotes the root of the tree, its children are labelled with the el-
ements of I, and in general the children of x = (x1, x2, . . . , xk) ∈ N are labelled by
(x1, x2, . . . , xk, 1), (x1, x2, . . . , xk, 2), . . . . Thus if a vertex has the label x = (x1, x2, . . . , xk) ∈
N then this means that it is the xth

k child of its parent, which is the xth
k−1 child of its own

parent and so on.
We will identify a rooted ordered tree with the set of labels of its vertices, since this

already contains the necessary information about the edges. It is clear that a G ⊂ N
may represent a rooted ordered tree if and only if ∅ ∈ G and for each (x1, x2, . . . , xk) ∈ G
we have (x1, x2, . . . , xk−1) ∈ G as well as (x1, x2, . . . , xk − 1) ∈ G, if xk > 1.

The set of finite rooted ordered trees will be denoted by G. We think about G ∈ G
as an oriented tree with edges pointing from parents to children. The degree of a vertex
x ∈ G is the number of its children in G, so this terminology differs a little bit from the
usual:

deg(x,G) := max {n ∈ I : xn ∈ G}.
The nth generation of G ∈ G is

G[n] := {x ∈ G : |x| = n}, n ≥ 0,
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where |x| = n iff x ∈ In.
The nth ancestor of x = (x1, x2, . . . , xk) ∈ N with k ≥ n is xn = (x1, x2, . . . , xk−n) if

k > n and xn = ∅ if k = n. In Section 4 we will also use the notation p(x) = x1 for the
parent of x.

The subtree rooted at a vertex x ∈ G is:

G↓x := {y : xy ∈ G}, (2)

this is just the progeny of x viewed as a rooted ordered tree. Also, (again with a slight
abuse of notations) for an x = (x1, x2, . . . , xn) ∈ N with |x| = n ≥ k we use the notation
x↓k = (xn−k+1, xn−k+2, . . . , xn). This would be the new label given to x ∈ G in the subtree
G↓xk .

2.2 The random tree model

As the parameter of the random tree model, we fix a weight function w : N → R+.
For the definition of the discrete time model, we do not need any further restrictions

on w. In the continuous time case, we impose certain restrictions on w, see condition
(M) later in this Section, these are needed for the model definition, and also for our
results in Section 3. In Section 4, we will require w(k) = 0, k ≥ K, which will on one
hand make sure that each vertex can have at most K children, and on the other hand,
it automatically implies condition (M).

Discrete time model

Given the weight function w : N → R+, let us define the following discrete time Markov
chain Υd on the countable state space G, with initial state Υd(0) = {∅}. If for n ≥ 0 we
have Υd(n) = G, then for a vertex x ∈ G let k := deg(x,G) + 1. Using this notation, let
the transition probabilities be

P(Υd(n+ 1) = G ∪ {xk}) = w(deg(x,G))∑
y∈G w(deg(y,G))

.

In other words, at each time step a new vertex appears, and attaches to exactly one
already existing vertex. If the tree at the appropriate time is G, then the probability of
choosing vertex x in the tree G is proportional to w(deg(x,G)).

Continuous time model

Given the weight function w : N → R+, let X(t) be a Markovian pure birth process with
X(0) = 0 and birth rates

P
(
X(t+ dt) = k + 1

∣∣X(t) = k
)
= w(k) dt+ o( dt).
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Let ρ : [0,∞) 7→ (0,∞] be the density of the point process corresponding to the pure
birth process X(t), namely let

ρ(t) = lim
ε→0

ε−1P((t, t+ ε) contains a point from X) .

Let ρ̂ : (0,∞) → (0,∞] the (formal) Laplace transform of ρ:

ρ̂(λ) :=

∫ ∞

0

e−λtρ(t) dt =
∞∑
n=0

n−1∏
i=0

w(i)

λ+ w(i)
.

Let
λ := inf{λ > 0 : ρ̂(λ) < ∞}.

Throughout the thesis we impose the following condition on the weight function w:

lim
λ↘λ

ρ̂(λ) > 1. (M)

We are now ready to define our randomly growing tree Υ(t) which will be a continuous
time, time-homogeneous Markov chain on the countable state space G, with initial state
Υ(0) = {∅}.

The jump rates are the following: if for a t ≥ 0 we have Υ(t) = G then the process
may jump to G∪ {xk} with rate w(deg(x,G)) where x ∈ G and k = deg(x,G) + 1. This
means that each existing vertex x ∈ Υ(t) ‘gives birth to a child’ with rate w(deg(x,Υ(t)))
independently of the others.

Note that condition (M) implies

∞∑
k=0

1

w(k)
= ∞

and hence it follows that the Markov chain Υ(t) is well defined for t ∈ [0,∞), it does not
blow up in finite time.

We will use τx to denote the birth time of vertex x,

τx := inf{t > 0 : x ∈ Υ(t)} .

Connection between the discrete and continuous time models

If we only look at our process at the stopping times when a new vertex is just added to
the randomly growing tree:

Tn := inf{t : |Υ(t)| = n+ 1}

then we get the discrete time model: Υ(Tn) has the same distribution as Υd(n), the
discrete time model at time n.
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3 Local properties

3.1 Questions, context

In the present Section we investigate the local properties of the random tree after a long
time of its evolution. We ask questions about the neighborhood of the “typical” vertex
(e.g. sampled uniformly randomly) of the random tree, after a long time.

Our main results are the following. We determine the asymptotic distribution of
the degree sequence, which equivalently gives the limiting distribution of the degree of
a (uniformly) randomly selected vertex. We also look deeper into the structure of the
tree: we give the asymptotic distribution of the subtree under a randomly selected vertex.
Moreover, we present the asymptotic distribution of the whole tree, seen from a randomly
selected vertex. For a general approach for asymptotic distribution of random subtrees
of random trees, see [2]. These results give greater insight to the limiting structure of
the random tree.

The key of our method is to place the process into continuous time, as already intro-
duced in Section 2.2. The greatest advantage of this setting is definitely that it reveals
the connection between the original, discrete time random tree model and the exten-
sively studied framework of general branching processes. Our main local results gain
their proofs through this relation. As an earlier application of a similar idea, see the pa-
per [38] of B. Pittel, in which the author establishes the connection with a Crump–Mode
branching process, and proves his results about the height of the uniform and general
ordered recursive tree, and also for a random m-ary search tree.

3.2 Results

From condition (M) it follows that the equation

ρ̂(λ) = 1 (3)

has a unique root λ∗.
Now we are ready to state our first theorem.

Theorem 3.1. Consider a weight function w satisfying condition (M) and let λ∗ be
defined as above. Consider a bounded function φ : G → R. Then the following limit holds
almost surely:

lim
t→∞

1

|Υ(t)|
∑

x∈Υ(t)

φ(Υ(t)↓x) = λ∗
∫ ∞

0

e−λ∗ tE
(
φ(Υ(t))

)
dt.

From Theorem 3.1 several statements follow, regarding the asymptotic behavior of
our random tree as seen from a randomly selected vertex ζ, chosen uniformly from Υ(t).
As typical examples we determine the asymptotic distribution of the number of children,
respectively, that of the whole subtree under the randomly chosen vertex, its kth ancestor,
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respectively. That is: the asymptotic distribution of deg(ζ,Υ(t)) ∈ N, Υ(t)↓ζ ∈ G and

(Υ(t)↓ζ(k) , ζ↓k) ∈ G(k).
In order to formulate these consequences of Theorem 3.1 we need to introduce some

more notation.
We call a probability measure π on G steady if∑

H∈G

π(H)
∑

x∈H[1]

11{H↓x = G} = π(G). (4)

Also, let G ∈ G and one of its historical orderings s = (s0, s1, . . . , s|G|−1) ∈ S(G) be
fixed. The historical sequence of total weights are defined as

W (G, s, i) := W (G(s, i))

for 0 ≤ i ≤ |G| − 1 while the respective weights of the appearing vertices are defined as

w(G, s, i) := w
(
deg

(
(si)

1, G(s, i− 1)
))

.

for 1 ≤ i ≤ |G| − 1. Since deg ((si)
1, G(s, i− 1)) is the degree of si’s parent just before si

appeared, w(G, s, i) is the rate with which our random tree process jumps from G(s, i−1)
to G(s, i).

Given the weight function w : N → R+ satisfying condition (M) and λ∗ defined as
before define

pw(k) :=
λ∗

λ∗ + w(k)

k−1∏
i=0

w(i)

λ∗ + w(i)
,

πw(G) :=
∑

s∈S(G)

λ∗

λ∗ +W (G)

|G|−2∏
i=0

w(G, s, i+ 1)

λ∗ +W (G, s, i)
.

Theorem 3.2. Consider a weight function w which satisfies condition (M) and let λ∗ be
defined as before. Then the following limits hold almost surely:

(a) For any fixed k ∈ N

lim
t→∞

|{x ∈ Υ(t) : deg(x,Υ(t)) = k}|
|Υ(t)|

= pw(k).

(b) For any fixed G ∈ G

lim
t→∞

∣∣∣{x ∈ Υ(t) : Υ(t)↓x = G}
∣∣∣

|Υ(t)|
= πw(G).
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(c) For any fixed (G, u) ∈ G(k)

lim
t→∞

∣∣∣{x ∈ Υ(t) : (Υ(t)↓x(k) , x↓k) = (G, u)}
∣∣∣

|Υ(t)|
= πw(G).

Furthermore, the functions pw,πw are probability distributions on N and G, respec-
tively, and πw is steady (i.e. identity (4) holds).

Remark 3.1. Parts (a), (b) and (c) of Theorem 3.2, in turn, give more and more
information about the asymptotic shape of the randomly growing tree Υ(t), as seen from
a random vertex ζ chosen with uniform distribution. Part (a) identifies the a.s. limit as
t → ∞, of the degree distribution of ζ. Part (b) identifies the a.s. limit as t → ∞, of the
distribution of the progeny of ζ. Finally, part (c) does the same for the distribution of
the progeny of the kth ancestor of the randomly selected vertex with the position of this
vertex marked.

Remark 3.2. From part (c) it is easy to derive the asymptotic distribution of the progeny
of the kth ancestor of the randomly selected vertex (as a rooted ordered tree without any
marked vertices):

lim
t→∞

∣∣∣{x ∈ Υ(t) : Υ(t)↓x(k) = G}
∣∣∣

|Υ(t)|
= πw(G)

∣∣G[k]

∣∣ .
The limit is the size-biased version of πw(G), with the biasing done by the size of the kth

generation.

Remark 3.3. Since the distribution πw is steady, part (c) identifies the asymptotic dis-
tribution of the whole family tree of the randomly selected vertex ζ (relatives of arbitrary
degree included). Hence asymptotically, as t → ∞, the tree Υ(t) viewed from a random
vertex ζ will have the following structure (we omit the precise formulation):
– there exists an infinite path of ancestors ζ1, ζ2, ζ3, . . . ‘going back in time’,
– we have finite ordered random trees rooted at each vertex of this path,
– the tree rooted at ζk with the position of ζ marked on it has distribution π

(k)
w on G(k)

where π
(k)
w (G, u) = πw(G).
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4 Global properties

4.1 Questions, context

It is natural to pose the following question. Let us fix a vertex, say the first vertex in
the first generation (first child of the root). What is the “limiting success level” of this
vertex, compared to the other vertices in the same generation? What we mean by this is
the number of descendants of this vertex, after a long time of tree evolution, compared
to the number of descendants of its brothers.

Another formulation of the same question is to fix a vertex, let the tree grow for
a long time, then choose a vertex uniformly at random from the big tree, and ask the
probability that this random vertex is descendant of the fixed vertex. Clearly, if we look
at these limiting probabilities for let us say the first generation, we get a distribution,
itself being random, that codes an important information of the evolution of the tree.

If one looks at the system of these limiting (as time evolution of the tree tends to
infinity) random distributions on the different generations of the tree, it is tempting to
ask something about the limiting measure of this system, when letting the generation
level tend to infinity. We will define the above concepts properly, and will denote this
overall limiting measure by µ.

Having a random measure in our hand, which describes a global property of the
limiting infinite system, it is natural to ask about the Hausdorff (and packing) dimension
of this measure. On the other hand, the dimension of the measure depends on a parameter
of the underlying metric, which is arbitrary. To rule out this (trivial) dependence, it is
usual to ask about the entropy of the limiting measure, which depends on the growth
process only. This is the natural equivalent of the dimension from a dynamical point of
view.

The key to our results is a Markov process appearing naturally in the construction of a
µ-typical leaf of the tree. After some discussion of the tree structure, the Markov property
will be easy to see. Some technical difficulties will arise from the non-compactness of the
state space.

The model choice is special in the sense that we only allow a finite degree for each
vertex, but it is general in the sense that after having fixed the maximum number of
children K a vertex may have, the weight function w, which determines the rule of
attachment, can be any positive-valued function on {0, 1, . . . , K − 1}.

4.2 Additional notation and the choice of w

We restrict our weight function to the following class of functions.
We fix a positive integer K > 2, and we require the weight function to be zero above

K:
w(k) = 0, k ≥ K. (5)

As is clear from the model definition, see Section 2.2, this restriction makes sure that any
vertex can have at most K children. The vertices of the random tree are labeled with
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elements of

N :=
∞∪
n=0

In,

as in (1), but now with the choice of I = {1, 2, . . . , K}. Since we require (5), the weight
function automatically fulfils (M).

4.3 Limiting objects

Recall from (3) that the equation
ρ̂(λ) = 1

has a unique root λ∗ > 0, the Malthusian parameter. This λ∗ gives the rate of exponential
growth of the tree size almost surely. The normalized size of the tree converges almost
surely to a random variable, which we denote by

Θ := lim
t→∞

e−λ∗t|Υ(t)| .

For every x ∈ N , we introduce the variables Θx, corresponding to the growth of the
subtree under x analogously, recall the notation (2) for subtrees,

Θx := lim
t→∞

e−λ∗(t−τx) |Υ↓x(t)| .

Clearly, for every x ∈ N , the random variables Θx are identically distributed. The basic
relation between the different Θx variables in the tree is that for any x ∈ N ,

Θx =
K∑
i=1

e−λ∗(τxi−τx)Θxi ,

which is straightforward from |Υ↓x(t)| = 1 +
∑K

i=1 |Υ↓xi(t)| .
Now let us ask the following question. Fix a vertex x ∈ N , and at time t, draw a

vertex ζt uniformly randomly from Υ(t). What is the probability that ζt is descendant
of x, so x ≺ ζt? As shown in (6) below, this probability tends to an almost sure limit ∆x

as t → ∞, which can be expressed using the τ and Θ random variables,

∆x := lim
t→∞

|Υ↓x(t)|
|Υ(t)|

= e−λ∗τx lim
t→∞

e−λ∗(t−τx)|Υ↓x(t)|
e−λ∗t|Υ(t)|

=
e−λ∗τxΘx

Θ∅
. (6)

We can now, for any n ∈ N, define a random measure µn on the finite set In = {x :
|x| = n}, the nth generation of the full tree, by

µn({x}) := ∆x .

This is a probability measure almost surely, which follows from the facts ∆∅ = 1 and
∆y =

∑K
i=1 ∆yi.

Let Hn denote the entropy of µn, that is

Hn = −
∑
|x|=n

∆x log∆x .
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A measure as the limiting object for the tree

Let ∂N denote the set of leaves of the complete tree: ∂N = {1, 2, . . . , K}∞. The
concatenation xy makes sense for x ∈ N and y ∈ ∂N , and then xy ∈ ∂N . Also, for
x ∈ N and z ∈ ∂N , we write x ≺ z if ∃y ∈ ∂N such that z = xy. For x ∈ N we denote
the set of leaves under x by ∂N (x) = {z ∈ ∂N : x ≺ z}.

Let x|l denote the first l letters of the string x, or in different words, let it denote the
ancestor of x on the l-th level of the tree, and let ∂N be equipped with the usual metric

d(x, y) = Λmax{n∈N :x|n=y|n} , (7)

where 0 < Λ < 1 is an arbitrary constant. This constant is often chosen to be 1/e,
which makes certain formulae appear simpler. Yet we will not fix the value, so that our
formulae express the dependence of the studied quantities on this arbitrary choice.

With the help of the µn random limiting measures, we define µ on the cylinder sets
∂N (x) of ∂N by

µ(∂N (x)) := µn({x}) = ∆x , if |x| = n ,

and then we extend µ from {∂N (x) : x ∈ N} to the sigma-algebra generated (on ∂N ).
Our results concern the properties of this extended random measure µ.

4.4 Results

Theorem 4.1. The limiting entropy

h := lim
n→∞

1

n
Hn

exists and is constant with probability one.

Theorem 4.2. The Hausdorff dimension dimH µ and the packing dimension dimP µ of
the measure µ are constant and equal with probability one, and h and the dimensions
satisfy the relation

dimH µ = dimP µ =
h

− log Λ
,

where Λ is from (7). Moreover, the local dimension of µ equals dimH µ = dimP µ at
µ-almost every point.

Theorem 4.3. Furthermore, an explicit formula for h is given:

h = E

(
K∑
i=1

λ∗τie
−λ∗τi

)
.

This can be computed given the weight function w.
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[43] Henry Scheffé. A useful convergence theorem for probability distributions. Ann.
Math. Statist., 18(3):434–438, 1947.

[44] Robert T. Smythe and Hosam M. Mahmoud. A survey of recursive trees. Teor.
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