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Abstract: In our paper we investigate the unbiased movement of
the unicellular eukaryotic ciliate Tetrahymena pyriformis. We use a
time-delayed version of the previously known model describe the spe-
ci�c movement of this species. With the help of semi-discretization,
we state analytic results for the model.
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1 Introduction

The most common principle for modeling self-organizing systems in developmen-
tal biology is the law of conservation. With a ∂Ω arbitrary surface enclosing the
volume Ω, the rate of change of the amount of the substance inside Ω is equal
to the �ux across the surface ∂Ω plus the production of material inside Ω. Thus

∂

∂t

∫
Ω

u(t, x)dV = −
∫
∂Ω

Jds+

∫
Ω

f(u, t, x)dV, (1.1)

where u(t, x) is the amount of material at point x, at time t, J is the �ux
of material and f(u, t, x) is the rate of production of u(t, x). Applying the
divergence theorem and taking into account that the volume Ω is arbitrary
yields

∂

∂t
u(t, x) = −∇J+ f(u, t, x) (1.2)

Assuming there is no cell proliferation, the unbiased motion of the cells is
described by Fick's equation (see [6]):
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∂u(t, x)

∂t
= D

∂2

∂x2
u(t, x) (1.3)

where u(t, x) is the concentration of cells at time t at point x. D > 0 is the
Fick constant, which is proportional to the speed of the di�usion. The system
is closed by proper initial conditions and Neumann boundary conditions (for a
closed system).

The idea that the unbiased movement of the unicellulars can be approxi-
mated with the same equation as molecular di�usion, based on the observation
that if a system of bacteria is left alone, then the cells move fast and randomly.
This random movement can be approximated with the di�usion (and in fact,
very accurately).

2 The delay

Due to the fact that in an average Tetrahymena Pyriformis population, the
considerable amount of cells (even up to one third of them, see [2]) is in �rest
state� (they do not move or react to chemical compounds), there is a delay
in their reaction to the changes of the environment (like the changes of cell
density or gradient of a chemotactical compound), while equation (1.3) assumes
immediate response. The delay we have to deal with is, however, not constant,
since at any given time just a portion of the cells is unresponsive. So the change
of the system is based on the present and on the past. To describe this type of
delay, we have to use a convolution of the present and past state of the system
with an appropriate density function s(t) to express the in�uence the past. The
delayed form of (1.3) is the following:

∂u(t, x)

∂t
=

∫ t

−∞
D

∂2

∂x2
u(t, x)s(t− τ)dτ (2.1)

To have a unique solution, we need an initial function instead of an initial
condition which is de�ned on the support of s(t).

In what follows, we consider the system in one dimension. To be able to
state analytical results, we approximate this system with the help of semi-
discretization. The time is still considered to be continuous, but the discretized
version of (2.1) in space is taken instead. We divide the interval on which our
equation holds to n+1 uniform sections (their diameter denoted by h), and we
consider the approximation of the partial space derivatives. All of our analytic
results are valid for this semi-discretized version, which is a good approximation
for the original equation if h is small. At point xi (i = 0, 1 . . . n + 1), ui(t) de-
notes the value of the solution at time t, and we use the following approximation
for the derivatives:

∂2

∂x2
u(t, x)

∣∣∣∣
x=xi

∼ u(t, xi+1)− 2u(t, xi) + u(t, xi−1)

h2
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From Neumann boundary conditions it follows that u0(t) = u1(t) and un+1(t) =
un(t). We have the following di�erential equations for each ui(t), i = 1, 2, . . . n:

du1(t)

dt
= d

∫ t

−∞
(u2(τ)− u1(τ))s(t− τ)dτ (2.2)

du2(t)

dt
= d

∫ t

−∞
(u3(τ)− u2(τ))s(t− τ)dτ+ (2.3)∫ t

−∞
(u1(τ)− u2(τ))s(t− τ)dτ

...

dun−1(t)

dt
= d

∫ t

−∞
(un(τ)− un−1(τ))s(t− τ)dτ+∫ t

−∞
(un−2(τ)− un−1(τ))s(t− τ)dτ

dun(t)

dt
= d

∫ t

−∞
(un(τ)− un−1(τ))s(t− τ)dτ (2.4)

(2.5)

The constant d > 0 is the Fick coe�cient multiplied by h2.
Remark. This kind of approximation is actually leads to the patchy environment
method.

Let us choose s(t) to be the exponential density function, i.e. s(t) = ae−at.
In this case, the parameter a > 0 describes the rate of the delay. The greater a
is, the weaker impact the past (has for more details see [5]).

The following substitution is useful for this type of density function (see [1]):

Ki(t) :=

∫ t

−∞
(ui+1(τ)− ui(τ))ae

−a(t−τ)dτ

we get

dKi(t)

dt
= −aKi(t) + a(ui+1(t)− ui(t)) (2.6)

dui(t)

dt
= dKi+1 − dKi (2.7)

Due to the Neumann boundary conditions K0(t) = 0 = Kn(t) and
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du1(t)

dt
= dK1(t) (2.8)

dK1(t)

dt
= −aK1(t) + a(u2(t)− u1(t)) (2.9)

du2(t)

dt
= −dK1(t) + dK2(t) (2.10)

dK2(t)

dt
= −aK2(t) + a(u3(t)− u2(t)) (2.11)

...

dun−1(t)

dt
= −dKn−1(t) + dKn−2 (2.12)

dKn−1(t)

dt
= −aKn−1(t) + a(un(t)− un−1(t)) (2.13)

du2(t)

dt
= −dKn−1(t) (2.14)

With this substitution, the initial functions transform into initial conditions,
since

ui(0) =

∫ 0

−∞
ui(τ)ae

−a(t−τ)dτ (2.15)

Ki(0) =

∫ 0

−∞
(ui+1(τ)− ui(τ))ae

−a(t−τ)dτ. (2.16)

3 Main results

Theorem 3.1. Let n ∈ N arbitrary. The system (2.8)-(2.14) has a unique
solution on (0,∞). The equilibrium (c, 0, c, . . . , 0, c) is asymptotically stable,
where c ∈ R depends on the initial conditions.

Remark. Theorem 3.1 states that the system converges to uniform concentration
distribution, since the zeros in the equilibrium vector correspond to the auxiliary
variable Ki(t).

In a special case, which has an important application, we can state more
about the positivity and monotonicity of the solution.

Theorem 3.2. We consider the system (2.8)-(2.14) for n=2, with the initial
conditions u1(0) = 0, u2(0) = 1. This system has a unique solution on (0,∞)
with the following properties:

a, The equilibrium
(
1
2 , 0,

1
2

)
is asymptotically stable,

b, The system undergoes a node-focus bifurcation at d
a = 1

8 .
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c, If

1

2
ln 2 < −1

2
ln

d

a
+

− arctan

(√
−1 + 8 d

a

)
+ π√

8 d
a − 1

,

(that is, d
a < 1.52 . . . ) then u1(t) and u2(t) are positive on (0,∞).

Proof. First let us apply the substitution t = a · τ . This transforms the system
(2.8)-(2.14) to the simpler form

du1(t)

dt
=

d

a
K1(t) (3.1)

dK1(t)

dt
= −K1(t) + u2(t)− u1(t) (3.2)

du2(t)

dt
= −d

a
K1(t) +

d

a
K2(t) (3.3)

dK2(t)

dt
= −K2(t) + u3(t)− u2(t) (3.4)

...

dun−1(t)

dt
= −d

a
Kn−1(t) +

d

a
Kn−2 (3.5)

dKn−1(t)

dt
= −Kn−1(t) + un(t)− un−1(t) (3.6)

du2(t)

dt
= −d

a
Kn−1(t) (3.7)

Let us denote d
a with d̃ from now on. The corresponding matrix of the system is

tridiagonal; the main diagonal is (0,−1, 0,−1, . . . ,−1, 0), the upper sub diagonal
is (d̃, 1, d̃, 1 . . . , d̃, 1), the lower sub diagonal is (−1,−d̃,−1, . . . ,−1,−d̃).

We can give a recursive formula to the characteristic polynomial:

pn(λ) =

{
−λpn−1(λ) + d̃pn−2(λ) if n = 2k + 1

(−1− λ)pn−1(λ) + d̃pn−2(λ) if n = 2k
(3.8)

We have p1(λ) = −λ, p2(λ) = λ2 + λ+ d̃.

Lemma 3.3. Let us denote pn(λ) = an0 + an1λ + . . . annλ
n if n is odd and

pn(λ) = bn0 + bn1λ+ . . . bnnλ
n if n is even. Then

a, a2n+1
0 = 0

b, b2n0 = d̃n

c, a2n+1
1 = −d̃n(n+ 1)

d, b2n1 = −d̃n−1 n(n+1)
2
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Proof of Lemma 3.3

Since a2n+3
0 = da2n+1

0 and a1 = 0, a, follows.
We have b2n+2

0 = d̃b2n0 − a2n+1
0 and b2 = d̃ so b, follows by induction.

We handle the last two statements together. From the recursion and a, and
b, we have:

a2n+1
1 = −d̃n + d̃a2n−1

1 (3.9)

b2n+2
1 = d̃n(n+ 1) + d̃b2n1 . (3.10)

By induction the Lemma follows.

Remark. From the Lemma it follows that 0 is an eigenvalue of (3.1)-(3.7) with
multiplicity 1. Straightforward calculations show that the corresponding eigen-
vector is (1, 0, 1, 0, . . . , 0, 1).

From [3] we use the following theorem:

Theorem. If λ is an eigenvalue of a tridiagonal matrix whose diagonals
are (a1, a2, . . . , an−1), (b1, b2, . . . , bn), (c1, c2, . . . , cn−1) and moreover akck ≤ 0
for k = 1, . . . , n− 1, then

min{ℜbj |j = 1, . . . , n} ≤ ℜλ ≤ max{ℜ(bj)|i = 1, . . . n}.

In our case this means that the real parts of the eigenvalues are non-positive
(and greater then −1), thus the equilibrium (c, 0, c, . . . , 0, c) is asymptotically
stable. The proof of the �rst Theorem 3.1 complete.

Now we turn to Theorem 3.2.

Proof. If n = 2, the corresponding equations are:

dK(t)

dt
= a(u2(t)− u1(t))− aK(t) (3.11)

du1(t)

dt
= dK(t) (3.12)

du2(t)

dt
= −dK(t) (3.13)

The initial conditions are:
u1(0) = 0,

u2(0) = 1,

K(0) = 1

Now let t = a · τ again. With the new time variable τ , the equations have
the following form:

K
′
(τ) = u2(τ)− u1(τ)−K(τ) (3.14)
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u
′

1(τ) =
d

a
K(τ) (3.15)

u
′

2(τ) = −d

a
K(τ) (3.16)

As in the previous proof, let us denote 0 < d̃ = d
a . Since

u
′

1(t) = −u
′

2(t) (3.17)

and u1(0) + u2(0) = 1, we have

u2(t) = 1− u1(t). (3.18)

We compute only the solution u1(t).
The characteristic polynomial is λ(λ2 + λ + 2d̃), so λ1 = 0 is a root. The

other two roots are:

λ2(d̃) = −1

2
−

√
1− 8d̃

2

λ3(d̃) = −1

2
+

√
1− 8d̃

2

They real part is negative if and only if d̃ > 0, thus solutions are asymptotically
stable, which proves a,.

The eigenvalues are real if d̃ ≤ 1
8 and complex if d̃ > 1

8 , and for every
parameter value the real part is negative, which proves b,.

Lemma 3.4. The solution of the system is strictly monotone if d̃ ≤ 1
8 and

oscillates (with an amplitude that tends to 0) if d̃ > 1
8 .

Proof of Lemma 3.4

If d̃ < 1
8 , the solution has the form:

u1(t) =
1

2
+ c2(d̃)e

λ2(d̃)t + c3(d̃)e
λ3(d̃)t, (3.19)

where

λ2(d̃) = −1

2
+

√
1− 8d̃

2

λ3(d̃) = −1

2
−

√
1− 8d̃

2

c2(d̃) = −1

4
+

4d̃− 1

4
√
1− 8d̃

c3(d̃) = −1

4
+

1− 4d̃

4
√
1− 8d̃
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By di�erentiating (3.19), we get u
′

1(t) > 0∀t > 0, d̃ ∈ (0, 1
8 ), so u1(t) is

strictly increasing and from (3.18) it follows that u2(t) is strictly decreasing.
If d̃ = 1

8 , then the solution is:

u1(t) = −1

2
e−

1
2 t − 1

8
te−

1
2 t +

1

2

which is also strictly decreasing.
If 1

8 < d̃, then the solution has the form

u1(t) =
1

2
+ c2(d̃)e

ℜλ(d̃)t sin(ℑλd̃t) + c3(d̃)e
ℜλ(d̃)t cos(ℑλd̃t) (3.20)

where

λ(d̃) = −1

2
+ i

√
8d− 1

2

c2(d̃) =
1

4

√
8d− 1− 1

4
√
8d− 1

c3(d̃) = −1

2

Since

A sin(α) +B cos(α) =
√

A2 +B2 sin

(
α+ sign

(
arccos

(
A√

A2 +B2

)))
,

u1(t) can be transformed to the form

1

2
+ ĉ1e

− 1
2 t sin

((
ℑλd̃+ ĉ2

)
t
)

(3.21)

The amplitude of the oscillation is ĉ1e
− 1

2 tn , for some tn ∈ R which goes to 0 if
tn → ∞. This �nishes the proof of Lemma 3.4.

If d̃ ≤ 1
8 then the solutions are positive, since u1(0) = 0, and u1(t) is increas-

ing. u2(0) = 1 and u2(t) → 1
2 decreasing, so u2(t) is also positive.

If 1
8 < d̃, then u

′

1(t) = 0, u
′

2(t) = 0 in�nitely many times. From the form
(3.21) it follows that it is enough to examine the sign of u2(t) in the �rst mini-
mum (let us denote it by t1), since the function sin(.) is multiplied by a strictly
decreasing positive function. From (3.17) and (3.18), we get that if u2(t1) > 0,
then u1(t) and u2(t) are positive on (0,∞).

By di�erentiating u2(t) = 1− u1(t) we get that the �rst positive root is:

t1 =
2arctan(−

√
8d̃− 1) + 2π√

8d̃− 1
. (3.22)

Substituting into u2(t) and using sin(arctan(x)) = 1√
1+x2

, we get the following

inequality:

−

√
d̃

2
e−

1
2 t1 +

1

2
> 0 (3.23)
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Substituting (3.22) into (3.23) we obtain:

1

2
ln 2 < −1

2
ln

d

a
+

− arctan

(√
−1 + 8 d

a

)
+ π√

8 d
a − 1

(3.24)

Solving (3.24) numerically we get c,.

4 The capillary assay

In this section we apply the system (2.8)�(2.14) to model the capillary assay
(for more detailed description see [4]). The sketch of the assay is on Figure 1.

Capillary
(nutrientt)

Tank
(nutrient+cells)

Figure 1: Capillary assay

At the beginning of the measurement the cells are placed in the lower tank,
then the free surfaces are joined. The cells can move through the common �uid
surface. After a period of time, the upper tank is removed, and cell density in
the upper tank is determined. The result refers to the general state of the cells,
and can be used as a control value for further measurements (where chemical
compounds are placed in the capillary).

We applied the system (2.8)-(2.14) to describe this assay, with n = 2. The
value of u1(t) corresponds to the density in the upper tank, u2(t) in the lower
tank. On Figure 2, the blue line shows the solution u1(t) multiplied by the
volume of the upper tank, while the red dots show the corresponding densities
in the upper tank and the green dots show their variances corresponding to the
measurement.

From Theorem 3.2 it follows that if d
a < 1

8 holds for the parameter, then the
solutions are monotonous. This means that, compared to the di�usivity and the
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Figure 2: The cell density in the capillary

memory of the cells, the surface area over which di�usion is taking place has to
be large enough to avoid oscillation. If oscillation occurs, one has to wait until
the cell densities stabilize to get precise results on the steady state, like on our
current �gure.

5 Conclusions

In our present article our interest is to study the movement of the eukaryotic
ciliate Tetrahymena Pyriformis. We modeled the movement of the cells with
regard to the fact that at any speci�c time a considerable amount of cells is
not active. This observation led us to the delayed equation, which gives a good
qualitative description of the capillary assay for a feasible set of parameters.
Our goal in the future is to model the chemical compound biased movement of
the cells.
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