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Abstract. In this article we consider inverse eigenvalue prob-
lems for the Schrödinger operator on a finite interval. We ex-
tend and strengthen previously known uniqueness theorems.
A partially known potential is identified by some sets of eigen-
values and norming constants.
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1. Introduction

We consider the Schrödinger operator on the finite interval [0, π]
defined by the equation

Ly = −y” + qy,(1.1)

with the real-valued potential q ∈ L1([0, π]).
The eigenvalue problem

Ly = λy on (0, π),(1.2)

y(0) cosα + y′(0) sinα = 0,(1.3)

y(π) cos β + y′(π) sin β = 0(1.4)

defines the sequence of eigenvalues λ0 < λ1 < . . . , λn ∈ R. Together
they form the spectrum σ(α, β, q). Without loss of generality (by
adding a sufficiently large constant to the potential) we may assume
0 /∈ σ(α, β, q) (which is assumed throughout the paper).

Let us fix λ and consider the initial value problems

Lu = λu on (0, π),(1.5)

u(0) = sinα,(1.6)

u′(0) = − cosα(1.7)
1
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and

Lv = λv on (0, π),(1.8)

v(π) = sin β,(1.9)

v′(π) = − cos β.(1.10)

The solutions are denoted by u(λ, x) and v(λ, x) respectively. We
define the norming constants τ(λ, α, q) by τ(λ, α, q) =

∫ π
0
|u(λ, x)|2dx,

and (for λ ∈ σ(α, β, q)) κ(λ, β, q) by v(λ, x) = κ(λ, β, q)u(λ, x). Re-
mark that for every λ, β, q there exists an α, unique mod π, such
that λ ∈ σ(α, β, q).

Our aim is to recover the potential q from four different types of
given data:

(1) a set of eigenvalues possibly taken from infinitely many dif-
ferent spectra

(2) a set of norming constants belonging to known eigenvalues
(3) the potential itself on the interval [0, a] ⊂ [0, π]
(4) the smoothness of the potential in the neighbourhood of a.

The first result of this type was given by Ambarzumian in 1929:

Theorem 1.1. (Ambarzumian, [?]) Let q ∈ C([0, π]) and
σ
(
π
2
, π

2
, q
)

= {n2, n ∈ N}. Then q ≡ 0.

We say that the set of eigenvalues determine q in Lp(0, π) if there
are no two different potentials q, q̃ ∈ Lp(0, π) which share all given
eigenvalues. In 1946 Borg proved that in most cases two spectra
are needed to recover the potential:

Theorem 1.2. (Borg, [?]) Let q ∈ L1(0, π), σ1 = σ(0, β, q),
σ2 = σ(α, β, q), sinα 6= 0 and σ′2 = σ2, if sin β = 0, and σ′2 = σ2 \λ0

if sin β 6= 0. Then σ1 ∪ σ′2 determines the potential a.e. and no
proper subset has the same property.

Hochstadt and Lieberman discovered in 1978 that if the potential
is known on half of the interval, then one spectrum is enough to
determine the potential on the whole interval:
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Theorem 1.3. (Hochstadt & Lieberman [?]) If q ∈ L1(0, π)
then q on

(
0, π

2

)
and the spectrum σ(α, β, q) determine q a.e. on

[0, π].

This theorem has been further generalised by Gesztesy and Si-
mon. They observed that the knowledge of the eigenvalues can be
replaced by information on the potential and its derivatives:

Theorem 1.4. (Gesztesy & Simon [?]) Let H = − d2

dx2
+ q

in L2(0, π) with boundary conditions (1.3), (1.4) and sinα 6= 0,
sin β 6= 0. Suppose q is C2k

(
π
2
− ε, π

2
+ ε
)

for some k ∈ N and for

some ε > 0. Then q on
[
0, π

2

]
, α and all eigenvalues of H except

for k + 1 uniquely determine tan β and q on (0, π).

For any real sequence S = {µn|n ≥ 0}, µn → ∞ define the
counting function

nS(t) =
∑
µn≤t

1.

Another result from the same paper is

Theorem 1.5. (Gesztesy & Simon [?]) Let q ∈ L1(0, π), sinα 6=
0 and sin β 6= 0. If S ⊂ σ = σ(α, β, q) satisfies

(1.11) nS(t) ≥ 2
(

1− a

π

)
nσ(t) +

a

π
− 1

2
for large t

then q on (0, a), α and S uniquely determine q a.e. and tan β.

We mention the following similar results using extra information
on the smoothness of q:

Theorem 1.6. (L. Amour et al [?], Theorem 1.1.) Let sinα 6=
0, sin βi 6= 0, i = 1, 2, π/2 ≤ a < π and p ∈ [1,∞). Suppose that
q1, q2 ∈ L1(0, π), q1 = q2 a.e. on [0, a] and q1 − q2 ∈ Lp([a, π]).
Consider an infinite set

S ⊂ σ(α, β1, q1) ∩ σ(α, β2, q2).
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Assume that there exists a real number C such that

2
(

1− a

π

)
nσ(t) + C ≥ nS(t) ≥ 2

(
1− a

π

)
nσ(t) +

1

2p
+ 2

a

π
− 2

(1.12)

for t ∈ S large enough, where σ denotes either of σ(α, βi, qi). Then
tan β1 = tan β2 and q1 = q2 a.e.

Theorem 1.7. (L. Amour et al [?], Theorem 1.1) Let k ∈
{0, 1, 2}, q1, q2 ∈ W k,1([0, π]) and sinα 6= 0, sin β1 6= 0, sin β2 6= 0.
Let S ⊂ σ(α, β1, q1) ∩ σ(α, β2, q2). Fix a ∈ [π

2
, π) and 1 ≤ p ≤ ∞.

Suppose that q1 = q2 on [0, a] and q1 − q2 ∈ W k,p([a, π]). Assume
that

ns(t) ≥ 2
(

1− a

π

)
nσ(α,β1,q1)(t)−

k

2
+

1

2p
− 1

2
−
(

1− a

π

)
,(1.13)

for t ∈ σ(α, β1, q1), t large enough. Then tan β1 = tan β2 and
q1 = q2 a.e.

Theorem 1.8. (L. Amour et al [?] 1.2) In the above theorem
we can replace condition (1.13) by

2
(

1− a

π

)
nσ(α,β1,q1)(t) + C ≥ ns(t) ≥(1.14)

2
(

1− a

π

)
nσ(α,β1,q1)(t)−

k

2
+

1

2p
− 2

(
1− a

π

)
,

t ∈ S, t large enough.

In 2012 Wei and Xu showed that the knowledge of the eigenvalues
can be replaced by the knowledge of norming constants. They
considered the constants

kw(λ, β, q) =


v(λ,0)
sinβ

= κ(λ,β,q) sinα
sinβ

if sinα 6= 0, sin β 6= 0,
v′(λ,0)
sinβ

= κ(λ,β,q)
sinβ

if sinα = 0, sin β 6= 0,

v(λ, 0) = κ(λ, β, q) sinα if sinα 6= 0, sin β = 0,

v′(λ, 0) = κ(λ, β, q) if sinα = 0, sin β = 0.

.

Theorem 1.9. (Wei & Xu [?]) Let sinα 6= 0, sin β1 6= 0,
sin β2 6= 0, k ∈ N, ε > 0 and q1, q2 ∈ C2k−1[0, ε). Assume that

σ(α, β1, q1) = σ(α, β2, q2), q
(j)
1 (0) = q

(j)
2 (0) for j = 0, 1, . . . , 2k − 1
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and finally that kw(λ, β1, q1) = kw(λ, β2, q2) holds for all eigenvalues
λ ∈ σ(α, β1, q1) with k+1 exceptions at most. Then tan β1 = tan β2

and q1 = q2 a.e.

Theorem 1.10. (Wei & Xu [?]) Let a ∈ [0, π/2), sinα 6=
0, sin β1 6= 0, sin β2 6= 0. Assume that q1 = q2 a.e. on [0, a],
q1, q2 ∈ Cn(a− ε, a + ε) for some n ∈ N0 and ε > 0. Assume that
σ(α, β1, q1) = σ(α, β2, q2) Let us suppose that for an infinite set
S ⊂ σ(α, β1, q1), κw(λ, β1, q1) = κw(λ, β2, q2) if λ ∈ S. Furthermore
assume that

nS(t) ≥
(

1− 2
a

π

)
nσ(α,β1,q1 )(t) +

a

π
− n+ 3

2

for all sufficiently large t ∈ R. Then tan β1 = tan β2 and q1 = q2

a.e.
Similar statements hold if we write

nS(t) ≥
(

1− 2
a

π

)
nσ(α,β1,q1 )(t)−

a

π
− n+ 1

2

in case sinα = sin β1 = sin β2 = 0,

nS(t) ≥
(

1− 2
a

π

)
nσ(α,β1,q1 )(t)−

n+ 3

2

in case sinα 6= 0, sin β1 = sin β2 = 0 and

nS(t) ≥
(

1− 2
a

π

)
nσ(α,β1,q1 )(t)−

n+ 1

2

in case sinα = 0, sin β1 6= 0, sin β2 6= 0.

In this paper we give a common generalization of most of the
results listed above, see Theorem 1.13 below. In many cases it
turns out that weaker lower bound of type (1.13) is sufficient. The
details are given in the third part of the paper. In the second part
we extend the main results of the paper [?] of the first author;
we prove uniqueness from knowledge of eigenvalues and norming
constants. Our conditions are connected to the closedness of cosine
systems. To formulate the results we need the following definition.
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For a sequence Λ = {λ0, λ1, . . . } ⊂ R, and for a subset S ⊂ Λ we
define the cosine system:

(1.15)

C(Λ, S) = {cos(2
√
λnx) : n ∈ N0} ∪ {x cos(2

√
λnx) : λn ∈ S}.

If we are given three types of data: a set of eigenvalues, norming
constants and the potential on the part of the interval, we can
formulate the following theorem:

Theorem 1.11. Let 1 ≤ p ≤ ∞, 0 ≤ a < π, q1, q2 ∈ L1(0, π),
q1 = q2 a.e. on (0, a), q1 − q2 ∈ Lp(a, π), sin β1 6= 0, sin β2 6= 0 and

Λ = {λn, λn ∈ σ(αn, β1, q1) ∩ σ(αn, β2, q2), n ∈ N0}

Suppose that λn 6→ −∞ are different real numbers and τ(λn, αn, q1) =
τ(λn, αn, q2) if λn ∈ S for a subset S ⊂ Λ. If C(Λ, S) is closed in
Lp(0, π − a) then tan β1 = tan β2 and q1 = q2 on (0, π) a.e.

In case of Dirichlet boundary condition the closedness property
of the modified cosine system gives an optimal condition.

Theorem 1.12. Let 1 ≤ p ≤ ∞, 0 ≤ a < π, q1, q2 ∈ L1(0, π),
q1 = q2 a.e. on (0, a), q1 − q2 ∈ Lp(0, π), sin β1 = sin β2 = 0,
let Λ and S be defined as above, λn 6→ −∞, λn 6= λm. Let µ 6=
±
√
λn, µ ∈ R. Then the system C(Λ, S) ∪ {cos(2

√
µx)} is closed

in Lp(0, π − a) if and only if q1 = q2 on (0, π) a.e.

We can replace the knowledge of finitely many eigenvalues (and
norming constant) by the knowledge of the derivatives of q in a.
Let us define the common counting function of the eigenvalues and
norming constant by:

(1.16) m(t) = 2nΛ(t2) + 2nS(t2).

In this case we can give the following sufficient condition.

Theorem 1.13. Let q1 = q2 a.e. on (0, a) and suppose that for
some δ0 > 0, k ≥ 0 and 1 ≤ p <∞, 1/p+1/p′ = 1 we have q1−q2 ∈
W k,p([a, a+ δ0)) and (q1− q2)(i)(a) = 0, i = 0, 1, . . . k− 1. Consider
some common eigenvalues λn ∈ σ(αn, β1, q1) ∩ σ(αn, β2, q2), n ≥ 0
λn 6→ −∞, λn 6= λm and τ(λn, αn, q1) = τ(λn, αn, q2), λn ∈ S for
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some S ⊂ Λ = {λ0, λ1, . . . }. If there exists a sequence Ri → ∞
such that
(1.17)

lim sup
i→∞

[∫ Ri

0

m(t)

t
dt− 4

(
1− a

π

)
Ri +

(
k +

1

p′

)
lnRi

]
> −∞

in case sin β1 6= 0, sin β2 6= 0 and

(1.18)

lim sup
i→∞

[∫ Ri

0

m(t)

t
dt− 4

(
1− a

π

)
Ri +

(
k + 2 +

1

p′

)
lnRi

]
> −∞

in case sin β1 = sin β2 = 0
then q1 = q2 a.e. on (0, π) and tan β1 = tan β2.
If p =∞ then we suppose additionally that q1, q2 ∈ Ck ([a, a+ δ0)),

and (q1 − q2)(i)(a) = 0 if i = 0, . . . k. In this case 1
p′

= 1 and the

same conclusions hold.

2. Proofs

Proposition 2.1. [?] Let us denote v′(λ, x) = d
dx
v(λ, x) and let

ω(λ) = sinαv′(λ, 0) + cosαv(λ, 0),(2.1)

for an arbitrary λ ∈ C. Then λ ∈ σ(α, β, q) if and only if λ is a real
zero of ω. If λ ∈ σ(α, β, q) then

(2.2)
∂ω

∂λ
= κ(λ, β, q)τ(λ, α, q).

An analogue of the following Lemma is proved in the paper of G.
Wei and H. Xu [?], Lemma 4.3 for a Sturm-Liouville operator with
different type of boundary conditions.

Proposition 2.2. Denote vi(x, λ), i = 1, 2 the functions defined
by βi and qi in (1.8), (1.9) and (1.10). Suppose q1 = q2 a.e. on (0, a).
Let

F (x, λ) = v2(λ, x)v′1(λ, x)− v′2(λ, x)v1(λ, x), F (λ) = F (a, λ).

Then F (λ) = 0 for a real λ if and only if there exists an α with
λ ∈ σ(α, β1, q1) ∩ σ(α, β2, q2). If λ ∈ σ(α, β1, q1) ∩ σ(α, β2, q2) then

τ(λ, α, q1) = τ(λ, α, q2) if and only if ∂F (λ)
∂λ

= Ḟ (λ) = 0.
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Proof. If λ is in both spectra then the solutions satisfy the same
boundary condition in 0, thus F (λ, 0) = 0 by definition and then
F (λ) = 0 follows from the fact that q1 = q2 a.e. on (0, a). For
general λ ∈ C we have (omitting arguments if obvious)

∂F

∂x
= v2v

′′
1 − v′′2v1 = (q1 − q2)v1v2(2.3)

which implies F (0, λ) ≡ F (λ). If sinα 6= 0, then by (2.1) v2(0)ω1−
v1(0)ω2 = sinαF (0) = sinαF . If λ ∈ σ(α, β1, q1)∩σ(α, β2, q2) then
ω1 = ω2 = 0 thus

sinαḞ (λ) = v2(0)ω̇1 − v1(0)ω̇2 = v2(0)κ1τ1 − v1(0)κ2τ2

= κ2κ1(τ2u2(0)− τ1u1(0)) = κ2κ1 sinα(τ1 − τ2)

which is zero if and only if τ1 = τ2.
In case of Dirichlet boundary condition, that is sinα = 0 we may

suppose ωi = vi(0) hence F = F (0) = ω2v
′
1(0)− ω1v

′
2(0) and then

Ḟ = ω̇2v
′
1(0)−ω̇1v

′
2(0) = κ2τ2κ1u

′
1(0)−κ1τ1κ2u

′
2(0) = κ2κ1 cosα(τ1−τ2)

which is zero if and only if τ1 = τ2.
�

The proof of Theorem 1.11

Proof. As we have seen, the common eigenvalues λn are zeros of
F (λ) which is an entire function of the variable λ. Thus if the λn
have a finite accumulation point then F is identically zero and then
v2(0)v′1(0) ≡ v1(0)v′2(0). This means that the Weyl-Titchmarsh
m-function of q1, β1 and q2, β2 are identical. By the Marchenko
uniqueness theorem [?] it follows that q1 = q2 a.e. and tan β1 =
tan β2. So in the remaining part of the proof we suppose that
λn have no finite accumulation point, and consequently there is a
subsequence tending to +∞. Integrating (2.3) in x gives by (1.9)
and (1.10)

(2.4) F (λ) =

π∫
a

(q2(x)− q1(x))v1(λ, x)v2(λ, x) dx− sin(β2 − β1).

Using the Povzner-Levitan integral representation for v1 and v2 (see
e.g. [?]) we can show that there exists a continuous kernel K(x, t)
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such that

F (z2) + sin(β2 − β1) =
sin β1 sin β2

2

π∫
a

(q2 − q1)+

+

π−a∫
0

cos(2zx)

[
sin β1 sin β2

2
(q2 − q1)(π − x)+

+

π−a∫
x

K(x, t)(q2 − q1)(π − t) dt

 dx.
The verification is a copying of the proof of Lemma 5.3 of [?]
with straightforward modifications, so we omit the details. Tak-
ing into account common eigenvalues tending to +∞ we get by the
Riemann-Lebesgue lemma the formulae

sin(β2 − β1) =
sin β1 sin β2

2

π∫
a

(q2 − q1)(2.5)

and

F (z2) =

π−a∫
0

cos(2zx)Aq2((q2 − q1)(π − x)) dx

where

Aq2h(x) =
sin β1 sin β2

2
h(x) +

π−a∫
x

K(x, t)h(t) dt.

Since F (λn) = 0 and for λn ∈ S Ḟ (λn) = 0, we get from here that
Aq2((q2− q1)(π−x)) ∈ Lp(0, π− a) is orthogonal to C(Λ, S). Since
this system is closed, we get that Aq2((q2− q1)(π−x)) = 0 a.e. But
Aq2 is a Volterra operator, thus q1 = q2 a.e and then tan β1 = tan β2,
which completes the proof. �

Proof of Theorem 1.12:

Proof. We can suppose again that Λ has no finite accumulation
points. Remark that in case of existence of an accumulation point,
C(Λ, S) is necessarily closed. Indeed, if h is orthogonal to C(Λ, S)
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then the zeros of its cosine Fourier transform H has a finite accu-
mulation point, hence H ≡ 0 and then h = 0 a.e.
The if part:
As above, we have a continuous kernel L(x, t, µ) such that

− 2(z2 − µ2)F (z2) =

π∫
a

(q2 − q1)+

+

π−a∫
0

cos(2zx)

(q2 − q1)(π − x) +

π−a∫
x

L(x, t, µ)(q2 − q1)(π − t) dt

 ,
see (2.17) in [?]. Since Λ has a subsequence tending to +∞, we get
from here

(2.6)

π∫
a

(q2 − q1) = 0

and

(2.7) −2(z2 − µ2)F (z2) =

π−a∫
0

cos(2zx)Aq2((q2 − q1)(π − x)) dx

where

(2.8) Aq2(h(x)) = h(x) +

π−a∫
x

L(x, t, µ)h(t) dt.

Now (2.7) yields that Aq2((q2−q1)(π−x)) is orthogonal to C(Λ, S),
consequently Aq2((q2 − q1)(π − x)) = 0 a.e. Since Aq2 is Volterra,
we obtain q1 = q2 a.e and then tan β1 = tan β2.
The only if part:
If C(Λ, S) is not complete then there exists 0 6= h ∈ Lp(0, π − a)
such that

H(z) =

π−a∫
0

h(x) cos 2xz dx

has zeros at ±µ, ±
√
λn and Ḣ(λ) = 0 for λ ∈ S. Using Lemma

2.1 in [?] we see that for every q1 ∈ L1(0, π) there exists a function
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q2 ∈ L1(0, π) for which q1 = q2 a.e. on (0, a), q1− q2 ∈ Lp(a, π) and
for a sufficiently small γ 6= 0 we have

γh(x) = Aq2((q2 − q1)(π − x)) a.e. on (0, π − a).

Build up the function F from q1 and q2; from (2.7) we get

γH(z) = −2(z2 − µ2)F (z2).

Now by Proposition 2.2 we see that there exist αn with λn ∈
σ(αn, β1, q1) ∩ σ(αn, β2, q2) and that τ(λn, αn, q1) = τ(λn, αn, q2)
for all λn ∈ S. The proof is complete. �

To prove Theorem 1.13 we need the following asymptotics for
F (z2). Amour, Faupin and Raoux proved this statement in [?]
assuming k ≤ 2 and sin β1 6= 0, sin β2 6= 0.

Proposition 2.3. Under the conditions of Theorem 1.13 for
any ε > 0 there exists a δ(ε) > 0 such that

|F (z2)| ≤ e2|=z|(π−a)

|=z|k+ 1
p′

(
ε+ ce−δ(ε)|=z|

)
, =z 6= 0

in case sin β1 6= 0, sin β2 6= 0 and

|F (z2)| ≤ e2|=z|(π−a)

|z|2|=z|k+ 1
p′

(
ε+ ce−δ(ε)|=z|

)
, =z 6= 0

in case sin β1 = sin β2 = 0. The constant c does not depend on ε, δ
and z.

Proof. Consider first the case sin βi 6= 0. Recall the known asymp-
totic expression

vi(z
2, x) = sin(βi) cos(z(π − x)) + O

(
e|=z|(π−x)

|z|

)
|z| → ∞

uniform in x, see e.g. in [?]. Putting this into (2.4) gives

F (z2) = sin(β1 − β2) +
sin β1 sin β2

2

π∫
a

(q2 − q1)

+

π∫
a

(q2(x)− q1(x))

[
sin β1 sin β2

2
cos 2z(π − x) + O

(
e2|=z|(π−x)

|z|

)]
dx.
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We know from (2.5) that the sum of the first two terms on the right
is zero. Hence

(2.9) F (z2) =

π∫
a

(q2 − q1)f0, f0(x) = O
(
e2|=z|(π−x)

)
uniformly in x. Fix a value 0 < δ < δ0. Since q2−q1 ∈ W k,p[a, a+δ)

and q
(i)
1 (a) = q

(i)
2 (a) for i = 0, . . . , k− 1, we make k integrations by

parts to obtain

(2.10)

a+δ∫
a

(q2 − q1)f0 =

a+δ∫
a

(q2 − q1)′f1 = · · · =
a+δ∫
a

(q2 − q1)(k)fk

where

fi+1(x) =

a+δ∫
x

fi.

We see by induction on i that

fi(x) = O

(
e2|=z|(π−x)

|=z|i

)
uniformly in x. Now

a+δ∫
a

|(q2 − q1)(k)(x)|e2|=z|(π−x)dx ≤

‖(q2 − q1)(k)‖Lp(a,a+δ)‖e2|=z|(π−x)‖Lp′ (a,a+δ) ≤

c0‖(q2 − q1)(k)‖Lp(a,a+δ)
e2|=z|(π−a)

|=z|1/p′
.

For small δ the Lp-norm of (q2−q1)(k) is small; for p =∞ this follows
from the additional information that (q2 − q1)(k) is continuous and
zero at x = a. The above considerations show that for small δ

(2.11)
∣∣∣ a+δ∫
a

(q2 − q1)f0

∣∣∣ ≤ ε
e2|=z|(π−a)

|=z|k+1/p′
.
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On the other hand∣∣∣ π∫
a+δ

(q2 − q1)f0

∣∣∣ ≤ ce2|=z|(π−a−δ) ≤ c1
e2|=z|(π−a)

|=z|k+1/p′
e−δ|=z|

which proves Proposition 2.3 if sin βi 6= 0. Now if sin β1 = sin β2 = 0
then we apply the asymptotic formula

vi(z
2, x) =

sin(z(π − x))

z
+ O

(
e|=z|(π−x)

|z|2

)
.

We substitute it into (2.4) to obtain

F (z2) =
1

2z2

π∫
a

(q2 − q1)−

π∫
a

(q2 − q1)(x)

[
cos 2z(π − x)

2z2
+ O

(
e2|=z|(π−x)

|z|3

)]
dx.

The first term is zero by (2.6), hence

z2F (z2) =

π∫
a

(q2 − q1)f0, f0(x) = O
(
e2|=z|(π−x)

)
and we proceed in estimating F as above. �

Proof of Theorem 1.13.

Proof. Suppose indirectly that there are potentials q1 6= q2 and
β1, β2 with the properties specified in Theorem 1.13 and that F (z2)
has zeros in λn ∈ Λ and (at least) double zeros in λn ∈ S. If
sin βi 6= 0 then

F (z2) =

∫ π−a

0

cos(2zx)Aq2((q2 − q1)(π − x))dx.

Since q1 6= q2 and Aq2 is Volterra, F can not be identically zero.
Recall the Jensen formula:
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Let f(z) be analytic for |z| < R, f(0) 6= 0. If n(t) is the number
of zeros of f(z) in |z| ≤ t then for 0 < r < R∫ r

0

n(t)

t
dt =

1

2π

∫ 2π

0

ln |f(reiϕ)|dϕ− ln |f(0)|.

Applying this formula to F (z2) we get with the notation m(t) =
2nΛ(t2) + 2nS(t2) that∫ r

0

m(t)

t
dt ≤ 1

2π

∫ 2π

0

ln |F (r2e2iϕ)|dϕ+ O(1).

Inserting here the estimate of Proposition 2.3 gives∫ r

0

m(t)

t
dt ≤ 1

2π

∫ 2π

0

[
2r| sinϕ|(π − a)− (k + 1/p′) ln(r| sinϕ|)

+ ln(ε+ ce−δr| sinϕ|)
]
dϕ+ O(1)

≤ 4r
(

1− a

π

)
−
(
k +

1

p′

)
ln r

+
1

2π

∫ 2π

0

ln
(
ε+ ce−δr|sin(ϕ)|) dϕ+ O(1).

In the last integral ε+ ce−δr|sin(ϕ)| is bounded from above, hence∫
| sinϕ|<1/2

ln
(
ε+ ce−δr|sin(ϕ)|) dϕ ≤ O(1).

On the other hand∫
| sinϕ|≥1/2

ln
(
ε+ ce−δr|sin(ϕ)|) dϕ ≤ ∫

| sinϕ|≥1/2

ln
(
ε+ ce−δr/2

)
dϕ

≤
∫
| sinϕ|≥1/2

ln(2ε)dϕ ≤ 2π ln ε+ O(1)

if r is large enough to ensure ce−δr/2 < ε. Consequently for every
ε > 0 we have∫ r

0

m(t)

t
dt ≤ 4r

(
1− a

π

)
−
(
k +

1

p′

)
ln r + ln ε+ O(1)

for sufficiently large r; in other words,∫ r

0

m(t)

t
dt− 4r

(
1− a

π

)
+

(
k +

1

p′

)
ln r → −∞, r →∞
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in contradiction to the assumptions of Theorem 1.13. If sin β1 =
sin β2 = 0 then by (2.7)

−2(z2 − µ2)F (z2) =

π−a∫
0

cos(2zx)Aq2((q2 − q1)(π − x)) dx.

Suppose indirectly that q2 6= q1; then (z2− µ2)F (z2) is a nontrivial
entire functions with zeros ±µ, ±

√
λn and at least double zeros for

λn ∈ S. We apply the Jensen formula for (z2 − µ2)F (z2), and the
above proof can be repeated with m(t) = 2nΛ(t2) + 2nS(t2) + 2.
The proof of Theorem 1.13 is complete. �

3. Applications

In this section we show that special cases of Theorem 1.13 give
sharper results than those in Theorems 1.5, 1.6, 1.10, and in case
p 6= ∞ Theorems 1.7, 1.8. We also check that Theorems 1.3, 1.4
and 1.9 are special cases of Theorem 1.13. For the verifications we
need the following lemmas.

Lemma 3.1. Let A > 0, B ∈ R, and define the number tA,B =

1/2 for irrational A and tA,B = s−1
2s

+ {Bs}
s

if A = r
s

is rational with
r, s > 0, (r, s) = 1. Here {x} = x − [x] is the fractional part of x.
Then

(3.1)
N∑
k=1

{Ak +B}
k

= tA,BlnN + o(lnN), N →∞.

If A is rational, the remainder term o(lnN) can be substituted by
O(1).

Proof. Let νk = {Ak + B} for short and Sk = ν1 + · · · + νk. The
usual Abelian summation by parts gives

(3.2)
N∑
k=1

νk
k

=
SN
N

+
N−1∑
k=1

Sk
k(k + 1)

=
N−1∑
k=1

Sk
k(k + 1)

+ O(1).
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Now if A = r
s

is rational then νk is periodic with period s and
average

1

s

s∑
k=1

{Ak +B} =
1

s

s∑
k=1

{Ak}+
{Bs}
s

=
s− 1

2s
+
{Bs}
s

= tA,B.

Consequently Sk = ktA,B + O(1) and this gives from (3.2) that

N∑
k=1

νk
k

= tA,BlnN + O(1).

If A is irrational then Sk = k/2 +o(k) see e.g. Pinner [?], and then
by (3.2)

N∑
k=1

νk
k

=
1

2
lnN + o(lnN)

as asserted. �

Lemma 3.2. Let A > 0, B, C ∈ R, µ0 ≤ µ1 ≤ µ2 ≤ . . . be real
numbers tending to +∞ and let m(t) =

∑
µk≤t 1.

a. If
√
µk ≤ Ak+B+O(1/k) holds for all sufficiently large indices

k then
R∫

1

2m(t2)

t
dt ≥ 2

A
R +

(
1− 2

B

A

)
lnR + O(1), R→∞.

b. If
√
µk ≤ [Ak +B] + C + O(1/k) for large k then

R∫
1

2m(t2)

t
dt ≥ 2

A
R+

(
1− 2

B + C

A
+

2

A
tA,B

)
lnR+o(lnR), R→∞.

The remainder term can be substituted by O(1) if A is rational.

Proof. a. The increase of µk diminish the counting function m(t) so
we can suppose

√
µk = Ak+B+O(1/k). Shifting the value of one√

µk by O(1/k) results in a changement O(1/k2) in the integral,
hence we can suppose

√
µk = Ak +B. Define the function r(t) by

2m(t2) = 2
t−B
A

+ r(t).
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Clearly 2m(µk) = 2m(µk+1 − 0) = 2(k + 1), hence r(
√
µk) = 2,

r(
√
µk+1 − 0) = 0 and r(t) is linear in [

√
µk,
√
µk+1). This implies

that
√
µk+1∫
√
µk

r(t)− 1

t
dt =

=

√
µk+1∫

(
√
µk+
√
µk+1)/2

(r(t)− 1)

(
1

t
− 1
√
µk +

√
µk+1 − t

)
dt = O

(
1

k2

)

Thus
R∫

1

r(t)

t
dt =

R∫
1

dt

t
+ O(1) = lnR + O(1)

and then

R∫
1

2m(t2)

t
dt =

R∫
1

2
t−B
At

dt+lnR+O(1) =
2

A
R+

(
1− 2

B

A

)
lnR+O(1).

b. As in a. we can suppose that
√
µk = [Ak + B] + C. Let√

µ∗k = Ak + B + C and let m∗ be the corresponding counting
function. From a. we know that

R∫
1

2m∗(t2)

t
dt =

2

A
R +

(
1− 2

B + C

A

)
lnR + O(1).

On the other hand, for NA ≤ R < (N + 1)A we have

R∫
1

2m(t2)− 2m∗(t2)

t
dt =

N∑
1

√
µ∗k∫

√
µk

2

t
dt+ O(1) =

N∑
1

2ln

√
µ∗k√
µk

+ O(1)

=
N∑
1

2

√
µ∗k −

√
µk√

µk
+ O(1) = 2

N∑
k=1

{Ak +B}
Ak

+ O(1).

Applying Lemma 3.1 the estimate b. follows. �
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Lemma 3.3. Let σ = σ(α, β; q) and consider an infinite subset
S ⊂ σ.
a. Suppose that

(3.3) nS(t) ≥ γnσ(t) + δ for large t > 0

for some 0 < γ ≤ 1 and δ ∈ R. Then for non-Dirichlet boundary
conditions sinα 6= 0, sin β 6= 0 we have
(3.4)
R∫

1

2nS(t2)

t
dt ≥ 2γR+ (1 + 2δ + 2γt1/γ,−δ/γ)lnR+ o(lnR) r →∞.

For one-sided Dirichlet condition
(3.5)
R∫

1

2nS(t2)

t
dt ≥ 2γR+(1+2δ−γ+2γt1/γ,−δ/γ)lnR+o(lnR) r →∞.

Finally for two-sided Dirichlet conditions sinα = sin β = 0 we have
(3.6)
R∫

1

2nS(t2)

t
dt ≥ 2γR+(1+2δ−2γ+2γt1/γ,−δ/γ)lnR+o(lnR) r →∞.

In all cases the remainder o(lnR) can be substituted by O(1) if γ
is rational.
b. If instead of (3.3) we only know that

(3.7) nS(t) ≥ γnσ(t) + δ for large t ∈ S
then the estimates (3.4), (3.5) and (3.6) of point a. remain valid if
we write δ + γ − 1 instead of δ.

Remark that an easy way to obtain lower bounds like (3.4), (3.5),
(3.6) is to substitute (3.3) into the integral. Our result gives better
lower bounds higher by (1− γ + 2γt1/γ,−δ/γ)lnR.

Proof. Let σ = {λ0, λ1, . . . } and S = {λk0 , λk1 , . . . }. Since nS(t)
is constant in [λki−1

, λki) while nσ(t) is growing, we see that (3.3)
holds for all large t if and only if nS(t− 0) ≥ γnσ(t− 0) + δ holds
for all large t ∈ S if and only if nS(t) ≥ γnσ(t) + δ− γ+ 1 holds for
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all large t ∈ S. This argument shows that b. follows from a. and
that if (3.3) is true then

i+1 = nS(λki) ≥ γnσ(λki)+δ−γ+1 = γ(ki+1)+δ−γ+1 for large i

that is, ki ≤ i−δ
γ

, i.e.

ki ≤
[
i− δ
γ

]
.(3.8)

For non-Dirichlet boundary conditions the well-known eigenvalue
asymptotics

√
λk = k + O(1/k) gives√

λki ≤
[
i− δ
γ

]
+ O

(
1

i

)
.

That is, Lemma 3.2 applied with A = 1/γ, B = −δ/γ and C =
0 yields (3.4). For one-sided Dirichlet condition the asymptotics√
λk = k + 1/2 + O(1/k) gives√

λki ≤
[
i− δ
γ

]
+

1

2
+ O

(
1

i

)
and Lemma 3.2 applies again with A = 1/γ, B = −δ/γ and C =
1/2. Finally for the two-sided Dirichlet conditions we argue the
same way using the asymptotics

√
λk = k + 1 + O(1/k). �

Lemma 3.4. Let γ > 0, δ, % ∈ R and t = t1/γ,−δ/γ. Then
a. If γ is irrational then

δ >
%− γ

2
⇔ 2δ + 2γt > %.

b. If γ = s/r is rational, (r, s) = 1, r, s > 0 then

δ > −
[
r
(
γ−%

2
+ 1

2r

)]
r

⇔ 2δ + 2γt ≥ %.

In particular

δ ≥ %− γ
2

+
1

2r
=
%

2
+

1− s
2r
⇒ 2δ + 2γt ≥ %.
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Proof. If γ is irrational then t = 1/2 so point a. is obvious. If

γ = s/r then t = s−1
2s

+ {−δr}
s

, hence

2δ + 2γt = 2δ +
s− 1

r
+ 2
{−δr}
r

= 2δ +
s− 1

r
+ 2
−δr − [−δr]

r

=
s− 1− 2[−δr]

r
.

Hence

s− 1− 2[−δr]
r

≥ %⇔ [−δr] ≤
[
s− 1− %r

2

]
⇔ −δr <

[
s+ 1− %r

2

]
⇔ δ > −

[
s+1−%r

2

]
r

= −
[
r
(
γ−%

2
+ 1

2r

)]
r

.

The last statement follows from here applying the inequality [x] >
x− 1. �

Now we are able to demonstrate that Theorem 1.13 is a common
generalization of Theorems 1.3 to 1.10 and in most cases gives a
stronger result even in the special situations described there. In-
troduce the shorthand notation

(NN) if sinα 6= 0, sin βi 6= 0,

(DN) if sinα = 0, sin βi 6= 0,

(ND) if sinα 6= 0, sin βi = 0,

(DD) if sinα = 0, sin βi = 0.

Recall that

(3.9)

R∫
1

2nσ(α,β,q)(t
2)

t
dt =


2R + lnR + O(1) in case (NN)

2R in case (ND) or (DN)

2R− lnR in case (DD)

see the proof of Lemma 3.2 or [?].

Checking Theorem 1.3
In the notation of Theorem 1.13 we have a = π/2, p = 1, k = 0,
Λ = σ(α, β, q) and S = ∅. In cases (NN) and (DN) we get from
(3.9) that ∫ R

0

2nΛ(t2)

t
dt ≥ 2R + O(1)
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which implies uniqueness by (1.17) and tan β is also uniquely iden-
tified. In cases (ND) and (DD) we have by (3.9)∫ R

0

2nΛ(t2)

t
dt ≥ 2R− lnR + O(1)

which implies uniqueness by (1.18). �

Checking Theorem 1.4
This is case (NN), a = π/2, p =∞, we have 2k instead of k and Λ
is σ after deleting k + 1 eigenvalues. From (3.9) we see that∫ R

0

2nΛ(t2)

t
dt = 2R + (1− 2(k + 1)) lnR + O(1)

and uniqueness follows from (1.17). �

Improving Theorem 1.5
Instead of

nS(t) ≥ 2
(

1− a

π

)
nσ(t) +

a

π
− 1

2
for large t

the weaker bound

nS(t) ≥ 2
(

1− a

π

)
nσ(t) + δ for large t,

δ >

{
a
π
− 3

2
if a

π
is irrational or 1− a

π
= s

2r
, s+ r is even

a
π
− 3

2
− 1

2r
if 1− a

π
= s

2r
, s+ r is odd.

is sufficient. Here and in what follows we always suppose that r > 0,
s > 0 and (r, s) = 1. Indeed, let γ = 2(1 − a/π). We have case
(NN), k = 0, p = 1. By (1.17) and (3.4) we need 1 + 2δ + 2γt > 0
if γ is irrational and ≥ 0 if γ is rational. Thus % = −1 and by
Lemma 3.4 we get δ > (−1−γ)/2 = a/π−3/2 if γ is irrational and
δ > −[r((γ + 1)/2) + 1/2]/r = −[(s+ r + 1)/2]/r for γ = s/r. �

Improving Theorem 1.6
The upper estimate in (1.12) can be deleted, the lower estimate can
be weakened, namely it is enough to require for large t ∈ R

nS(t) ≥ 2
(

1− a

π

)
nσ(t) + δ, δ >

{
1
2p
− 2 + a

π
if γ is irrational

− [r(− 1
2p

+2− a
π

+ 1
2r

)]

r
if γ = s

r
.

(3.10)
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Indeed, we have (NN), k = 0, 1 ≤ p < ∞, γ = 2(1 − a/π) hence
(1.17) and (3.4) yield 1 + 2δ + 2γt > 1/p − 1 for irrational γ and
≥ for rational γ. Thus % = 1/p − 2 and Lemma 3.4 gives (3.10).
Remark that in the original lower bound (1.12) δ = 1/(2p) − 1,
see Lemma 3.3 b. That the bound (3.10) is weaker is obvious for
irrational γ and can be checked by

1

2p
− 1 ≥ 1

2p
− 1 +

1− s
2r

= −
r(− 1

2p
+ 2− a

π
+ 1

2r
)− 1

r
>

−
[r(− 1

2p
+ 2− a

π
+ 1

2r
)]

r
for rational γ. �

Improving Theorems 1.7 and 1.8 in case p 6=∞
The statement can be extended from k = 0, 1, 2 to every k ∈ N0,
the upper bound in (1.14) can be deleted and the lower bounds in
(1.13) and (1.14) can be weakened by

nS(t) ≥ 2
(

1− a

π

)
nσ(t) + δ,(3.11)

δ >

{
1
2p
− 2 + a

π
− k

2
if γ is irrational

− [r(− 1
2p

+2− a
π

+ k
2

+ 1
2r

)]

r
if γ = s

r
.

That (3.11) implies uniqueness can be checked in the same way
as (3.10) in the special case k = 0; we apply Lemma 3.4 with
% = −k−2 + 1/p. The original lower bounds are δ = 1

2p
− 3

2
+ a

π
− k

2

in (1.13) and δ = 1
2p
− 1− k

2
= %/2 in (1.14), see Lemma 3.3 b. The

latter is smaller but the bound in (3.11) is even smaller. This is
straightforward for irrational γ and for γ = s/r it can be checked
by

−
[r(γ−%

2
+ 1

2r
)]

r
< −γ − %

2
+

1

2r
=
%

2
+

1− s
2r
≤ %

2
.

�

Checking Theorem 1.9
Before the formal proof we show that if σ(α, β1, q1) = σ(α, β2, q2)
then for an eigenvalue λn ∈ σ(α, β1, q1) we have τ(λn, α, q1) =
τ(λn, α, q2) if and only if κw(λn, β1, q1) = κw(λn, β2, q2). Indeed,
the function ω1(z) defined in (2.1) is an entire function of order 1/2
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whose zeros are precisely the eigenvalues λn ∈ σ(α, β1, q1). Conse-
quently by the Hadamard theorem

(3.12) ω1(z) = c
∏
n≥0

(
1− z

λn

)
.

If sin β1 6= 0 then by the known asymptotic formulae

(3.13)

v1(x, z) = sin(β1) cos(
√
z(π − x)) +O

(
e|=
√
z|(π−x)√
|z|

)
(3.14)

v
′

1(x, z) = sin(β1) sin(
√
z(π − x))

√
z +O

(
e|=
√
z|(π−x)

)
(see e.g.[?]) we obtain

ω1(z) = sinα sin β1

√
z sin(

√
zπ) + O(e|=

√
z|(π)).

This means that in the constant c of (3.12) there is an unknown
factor sin β1; in other words ω1/ sin β1 = ω2/ sin β2. Now ω̇i = κiτi
implies that in cases (NN) and (DN)

κ(λn, β1, q1)

sin β1

τ(λn, α, q1) =
ω̇1(λn)

sin β1

=
ω̇2(λn)

sin β2

=
κ(λn, β2, q2)

sin β2

τ(λn, α, q2).

Since κw = κ sinα
sinβ

in case (NN) and κw = κ
sinβ

in case (DN), this

shows that κw,1 = κw,2 if and only if τ1 = τ2. If sin β1 = sin β2 = 0
then from the asymptotics

vi(x, z) =
sin(
√
z(π − x))√
z

+O

(
e|=
√
z|(π−x)

|z|

)
(3.15)

v
′

i(x, z) = − cos(
√
z(π − x)) +O

(
e|=
√
z|(π−x)√
|z|

)
(3.16)

we obtain ω1 = ω2. Since κw = κ in case (DD) and κw = κ sinα in
case (ND) so again κ1 = κ2 if and only if τ1 = τ2. Now return to the
proof of Theorem 1.9. This is the case (NN), a = 0, p =∞, 2k− 1
instead of k, Λ = σ(α, β1, q1) and S is σ(α, β1, q1) after deleting
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k + 1 elements. Consequently m(t) = 4nσ(t2) − 2k − 2 for large t
and then ∫ R

0

m(t)

t
dt = 4R + (2− 2k − 2) lnR + O(1)

which implies uniqueness by Theorem 1.13. �

Improving Theorem 1.10
The lower bounds can be weakened by nS(t) ≥ (1− 2a/π)nσ(t) + δ
for large t ∈ R where

δ >

{
a
π
− n+4

2
for irrational γ,

− [r(− a
π

+n+4
2

+ 1
2r

)]

r
for γ = s

r

in case (NN),

δ >

{
−n+2

2
for irrational γ,

− [r(n+2
2

+ 1
2r

)]

r
for γ = s

r

in case (DN),

δ >

{
−n+4

2
for irrational γ,

− [r(n+4
2

+ 1
2r

)]

r
for γ = s

r

in case (ND) and

δ >

{
− a
π
− n+2

2
for irrational γ,

− [r( a
π

+n+2
2

+ 1
2r

)]

r
for γ = s

r

in case (DD). Indeed, we have γ = 1− 2a/π. In case (NN) we need
that 1 + 1 + 2δ + 2γt > −n − 1 for irrational γ and ≥ −n − 1
for γ = s/r. Consequently % = −n − 3. In case (DN) we need
1 + 2δ − γ + 2γt > (≥)− n− 1, hence % = −n− 1− 2a/π. In case
(ND) we need 1+2δ−γ+2γt > (≥)−n−3, i.e. % = −n−3−2a/π.
Finally in case (DD) we need −1 + 1 + 2δ− 2γ+ 2γt > (≥)−n− 3
which means that % = −n− 1− 4a/π. In all the four cases we get
from Lemma 3.4 that

δ >

{
%−γ

2
for irrational γ

− [r( γ−%2 + 1
2r )]

r
for γ = s

r
.

These are weaker bounds than those in Theorem 1.10. This is
obvious for irrational γ and for γ = s/r it follows from −[r((γ −
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%)/2 + 1/(2r))]/r < (% − γ)/2 + 1/(2r) = %/2 + (1 − s)/(2r). The
proof is complete. �
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