
Evolutionary algorithms

Orsolya Sáfár

2019 spring

Orsolya Sáfár Evolutionary algorithms

Course requirements

I At least 70% attendance of the contact lessons is required

I Mark are based on homework assignments. A total of 120

points can be obtained from the problem sets issued each

week. The homework assignments cover three main topics

(simple algorithms, permutation representations, real

representations). Students have to reach a total of 12 points

in each topic to pass.

Marks based on the total score are as follows:

0-39: 1

40-49: 2

50-59: 3

60-69: 4

70+ : 5

Orsolya Sáfár Evolutionary algorithms

Motivation

Let us say we have some optimization problem, that is, we have to

choose the best from the possible candidates in a reasonable time.

For example:

1. Find an optimal path for an walking tour

2. Find an optimal path for a robotic arm

3. Make an optimal timetable (for our university)

4. Find a good strategy in the game 'noughts and crosses'

Orsolya Sáfár Evolutionary algorithms

Running time

Let us denote the length of our input by n ∈ N. Our algorithm's

running time is O(f (n)) if we can give an upper estimate for the

number of necessary basic operations by cf (n), where c ∈ R is a

constant.

An algorithm has polynomial running time if its running time is

O(nk) for some k ∈ N. An algorithm has exponential running time

if its running time is O(an) for some a > 1.

Orsolya Sáfár Evolutionary algorithms

Examples

We wish to sort an array of n entries.

Selection sort: entries to the left of the pointer are �xed and in

ascending order, and no entry to the right of the pointer is smaller

than any entry to the left of the pointer.

We move the pointer to the right, in each step we identify the

minimum entry on right, and exchange it into position. Next round

we have one less entry to deal with.

Since in round n − i we use i − 1 compares, and at most 1

exchange, the running time is

n∑
i=1

i =
n(n + 1)

2
=

n2

2
+

n

2
.

That is, the running time of the selection sort is O(n2).

Orsolya Sáfár Evolutionary algorithms

Examples cont'd

Merge sort: We divide the array into two halves (not necessarily

same sized), recursively sort each half, then merge the two halves.

T (n) denotes the number of necessary steps for merge sorting an

array of n entries.

In case we divided our array of n entries into two subarrays having

n1 and n2 entries,

I the sorting of the two subarrays takes T (n1) + T (n2) steps,

I the merging the two subarrays takes at most n1+ n2 compares.

Hence T (1) = 0 and T (n) ≤ n + 2T
(
n
2

)
, we have

T (n) ≤ n + 2 · n
2
+ · · ·+ 2k−1T

(n

2k−1

)
≤ n[log2 n]

Hence the running time of the merge sort is O(n log2 n).

Orsolya Sáfár Evolutionary algorithms

Estimating the running time

In the previous two examples we could calculate the exact running

time. But in some cases it's not possible, we can only estimate the

number of steps from actual measured running time in seconds.

Let us suppose, that the running time is O(nk) for some unknown

k ∈ N. This problem is overdetermined, since it has two unknowns

(the exponent k and the constant factor c) but many equations

(the number of measurements).

Let us denote the number of necessary steps by T (n), where n is

the length of the input. If T (n) = cnk then by the identities of the

logarithm

log(T (n)) = log c + k log(n).

That is, if we plot the logarithm of the running time on the y axis

and the logarithm of n on the x axis, then we get a straight line. In

this plot, called the log-log scale plot, the steepness of the line is k ,
which is the unknown exponent.

Orsolya Sáfár Evolutionary algorithms

A brute force algorithms

A brute force algorithm solves an optimization problem by checking

every candidate. Of course this isn't possible if you have in�nitely

many possible solutions (for example if the problem is continuous).

These algorithms are easy to write, but in many cases the running

time isn't acceptable if n is large.

However, if n is small, the more sophisticated solutions might not

be worth the e�ort.

Orsolya Sáfár Evolutionary algorithms

The backpack problem

Given a set of di�erent items, each one with an associated value

and weight, determine which items you should pick in order to

maximize the value of the items without surpassing the capacity of

your backpack. We illustrate the design of a genetic algorithm on

this problem.

We have n items, each of them has a weight

s = (s1, s2, . . . , sn) ∈ Rn
+ and a value v = (v1, v2, . . . , vn) ∈ Rn

+.

Let us denote the capacity of the backpack by C ∈ R+.

There are 2n possible solutions, since there are two possible states

for each item (either we put it in the backpack or not). A brute

force solution would check each of them, hence its running time is

exponential. Our goal is to �nd a better solution.

There exists a clever polynomial algorithm (using dynamic

programming) if the weights are integers, but in our problem they

can be arbitrary positive real numbers.

Orsolya Sáfár Evolutionary algorithms

Biological background

These methods are called evolutionary or genetic algorithms since

their basic concepts mimic the evolution of species. They select

some 'parent solution' from a pool of possible candidates and by

using two operators on them (called crossover and mutation) they

make o�spring solutions. The o�spring are similar to their parents,

but they are not identical. The selection of the parents is random,

but the better (more '�t') a solution is, the most likely that it will

be chosen as a parent.

Environment Problem

Individual Candidate solution

Population Multiset of candidate solutions

Fitness Quality of the solution

Genome Representation of the solution

Orsolya Sáfár Evolutionary algorithms

Scheme

Orsolya Sáfár Evolutionary algorithms

Solving the backpack problem with a genetic algorithm

I Representation (coding): a 0�1 sequence of length n. A 1 in

position i means that we put the ith item in the backpack, 0

means that we don't.

I Fitness: the sum of the values of the items we have chosen, if

the sum of the weights is less than (or equal to) the capacity,

0 otherwise. Our goal is to maximize the �tness.

I Individual: a possible choice of items

I Population: a multiset of choices (there can be identical items)

I Genotype: the individual's 0-1 series

I Phenotype: the set of items we have chosen

Orsolya Sáfár Evolutionary algorithms

Choosing the parents

From the population we wish to choose the solutions with high

�tness as parents, hoping that their o�springs will be good or even

better solutions as their parents were.

However, it's important, that the low �tness solutions still have a

chance to reproduce. This decreases the chance of getting stuck in

a local optimum (which is the greatest danger using any genetic

algorithm). That is, we have to maintain the diversity of the

population, at least in the beginning.

Orsolya Sáfár Evolutionary algorithms

Roulette wheel method

Let us suppose that for a given population the �tness of the

individuals are f1, f2, . . . fk ≥ 0. We make a probability distribution

by dividing each fi by
∑k

i=1
fi -s to obtain the probabilities

p1, p2, . . . pk (normalizing).

Now we choose k parents independently in k rounds. In each round

we choose the ith individual with probability pi .

Orsolya Sáfár Evolutionary algorithms

Issues with the roulette wheel method

I In the beginning, the o�spring of one outstanding solution can

dominate the population. If we lose diversity too quickly, we

are going to stuck in a local optimum.

I When we are near the global optimum, the solution and hence

their �tness are very similar. The result is a slow convergence.

I The relative frequency of the individuals can deviate strongly

from the probabilities, especially if the population size is small.

But we might not have the time or memory available to work

with a large population.

I Seemingly slight changes of the �tness (like adding a constant

to every fi) function can bring radical changes in the e�ciency

of the algorithm. This can be useful, if we use this property

with caution.

Orsolya Sáfár Evolutionary algorithms

Scaling

The �rst two problems can be remedied by scaling of the �tness

function.

We can increase the di�erences by applying xn or exp(x) type
scaling. It helps to accelerate convergence in the �nal phase of the

algorithm.

We can maintain the diversity by slowing the convergence using

ln(x) or
√
x type scaling.

The main problem of choosing the right scaling is that you need to

act while the algorithm is running, since what helps in the �rst

phase makes things worse in the end and vice versa.

Orsolya Sáfár Evolutionary algorithms

Elitism

To make sure that the maximal �tness doesn't decrease in the next

generation, we can use elitism, that is, we copy the individual with

maximum �tness (elite solution) from the parent population to the

o�spring population.

The elite solution can replace a random o�spring or the o�spring

with minimal �tness. Elitism guarantees that the maximal �tness

doesn't decrease in the next generation. However, it has a major

drawback: we might get stuck in a local optimum.

Orsolya Sáfár Evolutionary algorithms

Elitism for the backpacking problem

Orsolya Sáfár Evolutionary algorithms

Tournament selection

We can select the parents by the roulette wheel method. Another

possibility is tournament selection. In one round, we select a �xed

number of individuals from the population (let's say k) completely

randomly, and from this k individuals, the one with the maximal

�tness will be chosen as parent. We repeat this selection as many

times as many parents we want to choose.

If k is relatively big, then the individuals with lower �tness have

lower chance to be selected as parent, hence k is an input of a

genetic algorithm. We can control the selection pressure (that is,

how rapidly we want to discard low �tness solutions) by applying a

suitable k . For example, if the convergence is slow, we can increase

k .

At this point, we have chosen the parents and we are ready to

generate the o�spring.

Orsolya Sáfár Evolutionary algorithms

Genetic operators

First, we use a crossover operator, which generates two o�spring

from two parents. Our goal is that the o�spring inherit features

from their parents. To ensure this, we have to �nd a good

representation and crossover operators. A suitable crossover can be:

I onepoint-crossover: we choose a random position, and break

both parents in that position. We stick the �rst half of the

�rst parent to the second half of the second parent, and for

the second o�spring, stick the �rst half of the second parent to

the second half of the �rst parent. For example, the o�springs

of 11100 and 00011 if we break in the second position: 11011

and 00100.

I multipoint-crossover similar to the one point-crossover, but we

choose more positions to break the parents

I uniform crossover in each position with probability 1

2
we

choose a gene from the �rst or the second parent, and we can

have the second o�spring by reversing our selection.

Orsolya Sáfár Evolutionary algorithms

Mutation

The goal of the mutation is the exploration of the searching space,

in order to prevent our algorithm winding up in a local optimum.

On the other hand a too strong perturbation can slow down the

convergence, and we might even end up not converging at all.

Finding the optimal parameter is crucial for the success of the

algorithm.

As a rule of thumb: choose the expected value of the number of

mutations between one gene per generation and one individual per

generation.

For the backpacking problem, a good mutation operator can be

that we �ip one gene in a random position with some �xed

probability for each individual.

Orsolya Sáfár Evolutionary algorithms

Stopping criteria

We iterate through generations, to �nd better and better solutions.

The most primitive stopping criterion is that we run a �xed number

of generation, and the output of our algorithm is the best individual

up to that point.

This way we might iterate too many or too few times, depending

on the rate of convergence. However, it has a great advantage: we

know the running time exactly (which could otherwise be an issue

for large inputs).

In the next lecture, we investigate the behavior of a genetic

algorithm, and then we can propose better stopping criteria.

Orsolya Sáfár Evolutionary algorithms

