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The definition of scheme

Let us suppose that for an optimization problem we represented the
possible solutions with a fix length 0-1 sequences. The set of all
possible solutions (that is, all 0-1 sequences) is called the search
space or solution space. A scheme is a hyper-plane in the solution
space, which can be represented using a third character (#,
meaning free bit that could be either 0 or 1).

For example, in a search space consisting of 5 length sequences the
scheme H = #1##0 fits 8 individuals.

The schemes can be visualized as the
vertices/edges/planes/hyper-planes of a hypercube.
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3 dimensional cube
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4 dimensional cube
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Inner parallelism

If the length of the sequence is n, then there are 3n schemes, and
2n schemes fit any one individual.

If the population contains µ individuals, then at most µ2n schemes
can fit at least one individual in the population. Although typically
there aren’t that many schemes present at once, Holland proved in
1975 that a genetic algorithm evaluates O(µ3) schemes in one
generation.

This property is called inner parallelism, which is one key
component of the success of the genetic algorithms.
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The properties of schemes

I The fitness of a scheme is the mean fitness of every fitting
individual, denoted by < H >

I The order of a scheme is the number of the fixed genes,
denoted by o(H)

I The defining length of the scheme is the distance of the first
and last fixed bits denoted by d(H)

For example if H = #1##0, then its order is 2, its defining length
is 3.
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Sketch of the proof of the Scheme theorem

Let us suppose, that our algorithm uses roulette-wheel selection,
one point crossover and bit-wise mutation. Let us denote the
length of the genome (that is the 0-1 sequence) by n.

The probability that scheme H will be destroyed by a one-point
crossover is:

Pd(H, 1X ) =
d(H)

n − 1
The probability that scheme H will be destroyed by the bit-wise
mutation is:

Pd(H,MUT ) = 1− (1− Pm)
o(H) ∼ o(H) · Pm,

where Pm denote the probability of the mutation (for each gene).

Orsolya Sáfár Evolutionary algorithms



Sketch of the proof of the Scheme theorem continued

The probability of choosing a scheme as parent depends on the
fitness of the scheme. Let us denote the mean of the fitness of
individuals in the population by <f>. If in the present population
there are µ(H, t) individuals that scheme H fits, and the population
size is ν, then the probability that scheme H will be selected as
parent at least once is:

P(H, t) =
µ(H, t) < H >

ν < f >
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Scheme theorem

Theorem
In the next generation the proportion of scheme H is at least

µ(H, t + 1)
ν

≥ µ(H, t)

ν

< H >

< f >

(
1− pc

d(H)

n − 1

)
(1− pmo(H))

This shows that the more fit a scheme is, the more it will dominate
the population. The inequality also gives an explanation for the
slowing convergence rate at the end.
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Deceptive problems

We call a problem deceptive, if low order schemes fitting the global
optimum have low fitness, while other low order schemes with high
fitness don’t fit the global optimum at all.

For example let us have 10 items for the backpacking problem,
whose weights are [1,2,. . . ,9, 10], and the values are [1, 2 , . . . , 9,
11]. If the capacity is 10, then the optimal packing contains only
the last item. However, if we already packed some items, and we
are still below the capacity, then we can increase the fitness by
packing one more light item (if the sum of the weights is still under
the capacity).

In this example we could increase the fitness of packing by going
further from the global optimum.
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Applying penalties in the fitness

A deceptive problem may be the result of the poor choice of the
fitness function.

In this case we might apply some penalty for a packing that
surpasses the capacity, instead of giving them 0 fitness. This
penalty might even vary in each generation (time dependent
penalty) or might depend on the current state of the population
(adaptive penalty).
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Gray coding

If the solutions are represented as 0-1 sequences meaning a binary
integer, then when a new position notation is needed, the structure
of the potential solution changes dramatically. So another possible
reason for a problem being deceptive is this property of the binary
number system.
For example 31 = 0111112, but 32 = 1000002. If the global
optimum is near a power of 2, low order schemes containing a lot
of 1-s won’t fit it.

If our potential solution is an integer, then it’s recommended using
Gray coding instead of simply having the binary number, because if
two numbers are ’near’, then their Gray codes are also ’near’.
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Gray coding

The Gray code of a 0-1 sequence is an other 0-1 sequence with the
same length.

Let us suppose n ∈ N and its binary form is: b1b2b3 . . . bk (which is
a 0-1 sequence) The first bit of the Gray code is b1, the i . bit is
bi−1 XOR bi , where XOR is the exclusive or.

For example:
n = 11, then in binary number system 11 = 8+ 2+ 1 hence
11 = 10112 and then the Gray code is 1110.
If n = 12 then, since 12 = 8+ 4, in the binary number system
12 = 11002 and the Gray code is 1010.
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Gray coding II

Definition
Let b = b1b2b3 . . . bk and c = c1c2c3 . . . ck two same length 0-1
sequences. The Hamming-distance of b and c is the number of
different bits in b and c .

Theorem
If n ∈ N then the Hamming distance of n’s and n+ 1’s Gray code is
1.
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Proof

If n = b1b2 . . . bk−1bk in the binary number system, then
n + 1 = b1b2 . . . bk−1bk+00 . . . 012.

To calculate the sum of these to base two number we have to start
at the end of b. As long as the bits are ones in b the sum will have
zeros. When we arrive at the first zero in b (let say in the jth
position), then in the sum there will be a 1, after that the bits are
identical.
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Proof II

When applying the Gray coding to the two numbers, since the
beginning of the two numbers are identical, the Gray code will be
also identical until the jth position. In the jth position, their Gray
code differs, since if we change one bit in a XOR operator, the
result will also change. After the jth position, in both numbers
there are 10 . . . 0 because after a 10 resp. 01 part in the jth and
j + 1th position all the bits are equal.

We have to finish the proof by observing that if j is the first or last
position, then before or after the jth position part is missing, but it
doesn’t change the fact that the two Gray codes differs in exactly
one bit.
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Gray code is unique

If two numbers are different, then their Gray codes are also
different, because in the position their binary number system form
differs, their Gray code also differs.

On the other hand, the Gray coding is invertible: the inverse image
of the Gray code g1, g2, g3 . . . , gk is b1, . . . bk , where b1 := g1 and
v := b1 going onwards:
for i=2:k
ifgi == 1 then v :=∼ v
bi := v .
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The hypothesis of the building blocks

It follows from the scheme theorem, that if two schemes have the
same fitness, then the one with the shorter defining length or lower
order is more likely to survive the genetic operators.

This observation implies the hypothesis of the building blocks
stating that the genetic algorithms working by competing shorter
schemes, and using these smaller schemes as building blocks it
constructs lengthier schemes fitting the optimum.
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Counterexample

We can give a counterexample for the hypothesis of building blocks.

Let us suppose we have the following optimization problem: we
have 3-length 0-1 sequences and the fitness function f is the
following: f(000)=5, f(111)=4, for the individuals with exactly one
1 in their genome the fitness is 1, and for individuals having two 1’s
is 3.

Then in any scheme containing at least one 0, changing every 0 to
1 the fitness of the scheme increases, although the global optimum
is 000.
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Counterexample
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