
Evolutionary algorithms

Sáfár Orsolya

Permutation representation

Sáfár Orsolya Evolutionary algorithms



Decision problems

A decision problem is a yes-or-no question on an infinite set of
inputs. It is traditional to define the decision problem as the set of
possible inputs together with the set of inputs for which the answer
is yes. These inputs can be natural numbers, but can also be values
of some other kind, like binary strings or strings over some other
alphabet.

The Boolean satisfiability problem is the problem of determining if
there exists an interpretation that satisfies a given Boolean formula.
If this is the case, the formula is called satisfiable, and is in the SAT
language. For example the x1 ∧ ¬x1 isn’t in the SAT language, but
(x1 ∧ x2) ∨ ¬x1 is.

Sáfár Orsolya Evolutionary algorithms



Complexity classes.

Definition
A problem is in P if we can determine that our input is in that
language in polynomial time.
Loosening this condition, we can define the NP class. Instead of
the formal definition we give the characterizing theorem:

Theorem
A decision problem is in NP if the claim that an input is in the
language can be verified in polynomial time.

Sáfár Orsolya Evolutionary algorithms



Hamiltonian cycle

Let us take all graphs. A graph is in the H language if it contains a
Hamiltonian cycle.

If someone gives a permutation of vertices stating that this is a
Hamiltonian cycle we can check if its true in polynomial time (for
example by checking n elements in the adjacency matrix).

Definition
A language is NP-hard, if any problem in NP can be reduced to it.
A problem is NP-complete if it’s NP-hard, an is in NP.
A famous conjecture is that P 6= NP .

Sáfár Orsolya Evolutionary algorithms



Famous NP-complete problems

I The language of graphs which can be colored with 3 colors
I To decide if a graph has a complete subgraph of k vertices

(the input is the graph and k)
I To decide if there is a Hamiltonian cycle in a graph
I To decide whether there is a Hamiltonian cycle with total

weight at most k in an edge-weighted graph
I The backpacking problem, where si = vi and the question is

whether there is a packing which value is exactly k .
I We have the tasks d1, d2, . . . , dk and a number T . Each task

takes 1 day to complete. We have a partial ordering: d1 ≺ d2
means that d1 have to be completed before d2. For each task
we have a due date h(di ). We have to decide whether there is
a scheduling for the tasks such that at most T tasks are not
ready by the corresponding due date.

Sáfár Orsolya Evolutionary algorithms



The Traveling Salesman problem

Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns
to the origin city?

This problem is in fact finding the minimum weight Hamiltonian
cycle in a complete weighted graph (or digraph).

Let us denote the number of cities by n. A naive algorithm, which
checks every possible permutation of the vertices computes (n− 1)!
sums, each with n terms.

Sáfár Orsolya Evolutionary algorithms



Karp-Held algorithm

Using dynamical programming we can solve the problem in
O(n22n) time. Let us denote the edges of the graph by 1, 2, . . . , n
and the weight of the vertex connecting i and j by aij .

Definition
Let S ⊂ {2, 3, . . . , n}, ` ∈ S and let us denote by C (S , `) the
shortest path starting from 1 that goes through every vertex of the
graph and ends in `.
We are going to compute C (S , `) recursively, which not only
determines the length of the shortest cycle but also the
permutation of the vertices.

Sáfár Orsolya Evolutionary algorithms



The recursion
I C ({`}, `) = a1`, ∀` ∈ S

I If |S | > 1 C (S , `) = minm∈S\{`} (C (S \ {`},m) + am`)

I The length of the shortest cycle
min`∈{2,3,...n}(C ({2, 3, . . . , n}, `) + a`1)

Sáfár Orsolya Evolutionary algorithms



Running time

To prove the running time we distinguish the cases according to the
size of S . Let |S | = k , then there are

(n−1
k

)
possible choices for S ;

we can choose ` in k different ways, and m in k − 1 different ways.
That is, the amount of necessary computations is:(

n−1∑
k=1

k(k − 1)
(
n − 1
k

))
+ n − 1 =

(
n−3∑
k=2

(
n − 3
k − 2

)
(n − 1)(n − 2)

)
+ n + (n − 1) =

(n − 1)(n − 2)2n−3 + (2n − 1) = O(n22n)

Sáfár Orsolya Evolutionary algorithms



Comparing the different running times

O(n22n) means that Karp-Held is still not a polynomial algorithm.
Is it any better at all then the naive O(n!) algorithm?

Theorem (Stirling’s formula)

n! ∼
(n
e

)n√
2πn

This shows that the rate of growth for the brute force algorithm is
much faster.

Sáfár Orsolya Evolutionary algorithms



Permutation representation

Since we don’t have a polynomial algorithm for the Traveling
Salesman problem, we will write a genetic algorithm. The natural
representation for a graph with n edges is the a permutation. The
representation is also appropriate for scheduling problems.

The main issue is to design the genetic operators. How could we
mutate a permutation? If we change one position the result is no
longer a permutation? Also the result of a one-point crossover is
also probably not a permutation.

Sáfár Orsolya Evolutionary algorithms



Denoting permutation

Given an order of the numbers 1, 2, . . . n we put the sequence
between parenthesis and denote it by π, for example π = (3214)

There is two possible coding for permutations. the first one is,
where π(i) is in the ith position. For example is the items are
A,B,C,D, then (3124) means the order CABD.

For the second coding the ith item of the list means, that position
of the ith, that is (3124) means the order BCAD. From now on we
use the first coding.

Sáfár Orsolya Evolutionary algorithms



Problems coded with permutation representation

Two different types of problems have solutions whose natural
representation are permutations.

First the scheduling problems, where we have to plan the order we
manufacture the products. If the product A has to be
manufactured before product B and C, all all three has to be
manufactured before product D, then the fitness of (1234) and
(1324) will be quite similar, while the fitness of (4123) will be low.

The other type is the adjacency problems, for example the traveling
salesman problem. In this problem the fitness of (1234) will be
identical to the fitness of (4123). The absolute position of an city
is not important, rather its neighbors.

Sáfár Orsolya Evolutionary algorithms



Mutation operators

Genetic algorithms with 0-1 sequence representations used bitwise
mutation. In case of permutation representation, it isn’t possible to
change only one gene, we have to modify at least two. Here the
probability of mutation will mean the probability of one individual
mutates (instead of one gene).

The first three mutation operators are recommended for scheduling
problems. They cause a relatively small change in the absolute
position.

Sáfár Orsolya Evolutionary algorithms



Mutation operators for scheduling

Swap mutation (SWAP): Exchange two items.
For example: (5 3 1 9 2 5 7 4 8) → (5 3 4 9 2 5 7 1 8).

Insert mutation (INS) We select two random positions, and move
the item in the second position immediately after the first one.
For example: (5 3 1 9 2 5 7 4 8) → (5 3 1 4 9 2 5 7 8).

Scramble mutation (SCR) We select two random positions, and
scramble everything between the two positions with a random
permutation.
For example: (5 3 1 9 2 5 7 4 8) has length 4, that is, we have to
scramble with a 4-long mutation i.e. with (3241). The result in this
case is (5 3 2 9 5 1 7 4 8).

Sáfár Orsolya Evolutionary algorithms



Mutation operator for adjacency problems

The following operator is recommended for adjacency problems,
since it keeps most of the connections intact.

Inversion mutation (INV) We select two random positions, and
then invert the order of the item between them.
For example: (6 3 1 9 2 5 7 4 8) → (6 3 5 2 9 1 7 4 8)

Sáfár Orsolya Evolutionary algorithms



Comparing the mutation operators

Sáfár Orsolya Evolutionary algorithms



Crossover operators

The goal of the crossover operators is to preserve the parents’
attributes. The exact type of attributes we want to preserve
depends on the nature of our problem.

Two operators for each type will be presented.

All four operator create one offspring from two parents. In some
cases even if we reverse the order of the parents, the same offspring
will be created, in these cases we have to modify the parent
selection mechanism.

Sáfár Orsolya Evolutionary algorithms



Order crossover (OX)

This operator is recommended for scheduling, since it preserves the
relative order of the items from the second parent (from now on the
first parent is p1, the second is p2).

I We select two random positions, the items between them (the
two positions included) is the matching segment.

I We copy to the offspring the matching segment from p1
I We copy the yet unused alleles from p2 to the offspring

starting from the position immediately after endpoint of the
matching segment.

Sáfár Orsolya Evolutionary algorithms



Example: OX

Let p1=(123456789) and p2=(937826514) and the matching
segment is positions 4–7.

Now take the matching segment from p1: (123456789)
Delete these alleles from p2: (93�782�6�51�4)

Copy the matching segment from p1 to the offspring (␣␣␣4567␣␣)
now copy the remaining alleles from p2 starting from the 8.
position: (382456719)

Sáfár Orsolya Evolutionary algorithms



Cycle crossover (CX)

This operator preserves the absolute position of the items from
both parents as much as possible. We divide the parents into
cycles. The goal is to find a set of positions where the same alleles
are present in both parents (of course not necessarily in the same
positions). We construct the cycles as follows:

I We start with the first unused allele of p1, that is, the first
position in the first cycle

I Look at the allele in the same position in p2
I Go to the position with the same allele in p1, and add this

allele to the cycle
I Repeat the previous two steps until we arrive at the first allele

in p1

Sáfár Orsolya Evolutionary algorithms



Example: CX

Let p1=(123456789) and p2=(937826514). The first cycle is:

(123456789) (123456789) (123456789) (123456789)
(937826514) (937826514) (937826514) (937826514)

The second one:
(123456789) (123456789) (123456789) (123456789)
(937826514) (937826514) (937826514) (937826514)

The third cycle contains only the 6 allele in position 5. Then the
offspring is created from the 1., 3., 5., . . . cycle of p1 and the
2., 4., 6., . . . cycle of p2.
(137426589).

Sáfár Orsolya Evolutionary algorithms



Partially mapped crossover (PMX)

This operator is recommended form adjacency type problems, since
it tries to preserve most of the connections of the parents. It works
as follows:

I We select two random positions, the items between them (the
two positions included) is the matching segment.

I We copy to the offspring the matching segment from p1
I We search for a suitable place form the alleles in p2’s matching

segment in the offspring*
I Copy the items from p2 to the empty positions

Sáfár Orsolya Evolutionary algorithms



Partially mapped crossover (PMX)

We search for a suitable place form the alleles in p2’s matching
segment in the offspring as follows:
I If the given allele is already in the matching segment of p1

then we don’t have to do anything
I If it isn’t in the matching segment, then let us denote the

allele by p2(j) (that is, it’s in position j)
I Look for the position of the p1(j) allele in p2, let us denote this

position by k. If this position isn’t in the matching segment
then copy p2(j) here. If it is in the matching segment then we
try again with p1(k) instead of p1(j) until we find a position
outside of the matching segment, where we copy p2(j).

Sáfár Orsolya Evolutionary algorithms



Example: PMX

Let p1=(123456789) and p2=(937826514) and the matching
segment is positions 4-7.

Here p1=(123456789) and p2=(937826514). The offspring is:
(␣␣␣4567␣␣)

Form the matching segment of p2: 8 isn’t it p1’s matching
segment, so we search a suitable position. Since p1(4) is 4 and 4 is
in the 9. position in p2. This is outside of the matching segment,
so we found the right place for 8, which is the 9. position:
(␣␣␣4567␣8)

Sáfár Orsolya Evolutionary algorithms



Example: PMX continued

The next item in p2’s matching segment is 2. Since it isn’t in p1’s
matching segment, we also have to find it a suitable position. Since
p1(5)=5, and 5 is in the 7. position in p2 which is inside of the
matching segment it isn’t a suitable position for 2. Instead we
search for p1(7) that is 7 in p2, which is in the 3. position and it’s
outside of the matching segment so we copy 2 here: (␣␣24567␣8).

The two remaining item from p2’s matching segment is 6 and 5.
They are both in p1’s matching segment, so we don’t have to do
anything.

We copy to the remaining positions the alleles of p2 : (932456718).

As these example show, there are 6 edges of the offspring that is
present in one of the parents. However the parents have a common
edge {7-8} which isn’t present in the offspring.

Sáfár Orsolya Evolutionary algorithms



Edge crossover (EX)

This operator is recommended for adjacency problems. It tries to
preserve the common edges, furthermore tries to copy as many
connections as possible. For this operator the order of the parents
is irrelevant.

We create an edge list for the parent pair, a list of neighboring
vertices for each vertex, indicating the common edges.

Sáfár Orsolya Evolutionary algorithms



Edge crossover (EX)

We build the offspring as follows:

I We select a random vertex as the current vertex, and copy the
allele in the offspring

I We delete the current vertex from every other vertex’s edge list
I If there is a common edge in the current vertex’s edge list,

then that vertex will be in the next current vertex (if there are
2 such vertices, we select randomly)

I If there is no common edge, the vertex with the shortest edge
list will be the next current vertex. (if there is more than one
such vertex, we select randomly)

I If we arrive to an empty edge list, we select randomly from the
remaining vertices.

Sáfár Orsolya Evolutionary algorithms



Example: EX

Let p1=(123456789) and p2=(937826514). First we construct the
edge list:

1 2,4,5,9 1 2,4,5,9
2 1,3,6,8 2 3,6,8 2 3,6,8 2 3,8
3 2,4,7,9 3 2,4,7,9 3 2,4,7,9 3 2,4,7,9
4 1,3,5,9 4 3,5,9 4 3,9 4 3,9
5 1,4,6 5 4,6 5 4,6
6 2,5,7 6 2,5,7 6 2,7 6 2,7
7 3,6,8 7 3,6,8 7 3,6,8 7 3,8
8 2,7,9 8 2,7,9 8 2,7,9 8 2,7,9
9 1,3,4,8 9 3,4,8 9 3,4,8 9 3,4,8
rc (1) sl (15) ce (156) rc (1562)

Sáfár Orsolya Evolutionary algorithms



Example continued

2 3,8
3 4,7,9 3 4,7,9 3 4,9 3 4,9
4 3,9 4 3,9 4 3,9 4 9

7 3,8 7 3 7 3
8 7,9 8 7,9
9 3,4,8 9 3,4 9 3,4 9 4
sl (15628) ce (156287) sl (1562873) rc (15628739)

The offspring is the permutation (156287394)

Sáfár Orsolya Evolutionary algorithms


