
Evolutionary algorithms

Sáfár Orsolya

Constrain handling

Sáfár Orsolya Evolutionary algorithms



Types of optimization problems

Let us suppose that for the representation of the solutions has the
variables x1, x2, . . . , xn whose values are in the domains
D1,D2, . . . ,Dn. We call the set D1 × D2 × · · · × Dn free searching

space. If we are looking for the solution on a subset of this set
then we have constrains to satisfy.

The types of the problems are

I We have no constrains, our goal is to maximize an object
function. FOP: free optimization problem

I We have constrains, we are searching one feasible solution.
CSP: constrain satisfaction problem

I We have constrains and an objective function. We are looking
for the optimal solution, which satisfies the constrains. COP:
constrained optimization problem

Sáfár Orsolya Evolutionary algorithms



Examples for COP

Backpacking
The number of variables are the number of items. The values of
the variables can be either 0 or zero. The free searching space is
{0, 1}n. However we have a constrain: the sum of the weights
can’t surpass the capacity. We are looking for a packing with
maximum value, hence it’s a COP.

Traveling agent
Let us denote the number of cities by n. We we represent our
solutions as an list of integers, whose values are between 1 and n,
that we also have a constrain: no repetitions are allowed. This
makes our problem a COP (for this particular representation).

Sáfár Orsolya Evolutionary algorithms



Examples for CSP

Graph coloring with k colors
A graph is given (for example with its adjacency matrix), and we
want to color it with k colors. It’s a CSP, since the constrain is,
that two neighboring vertex can’t have the same color. But we
don’t optimize: any of the right coloring will do.

8 queens An 8× 8 chessboard is given, we want to put 8 queens on
it so that none of them hits any other queen. Our task is to find a
good position for each. Since we don’t have an objective function
it’s also a CSP.

Sáfár Orsolya Evolutionary algorithms



Using genetic operators for constrained problems

The direct approach starts with feasible solutions in the starting
population, and makes sure every offspring is feasible.

One way to do that is: the genetic operators create feasible
offspring from feasible parents. In this case the constrains are
satisfied for every candidate solution.

Example For the Traveling Salesman problem a permutation is a
feasible solution. If our operators create permutations (like INS
mutation, or CX crossover), than the constrain ’visit every city
once’ is satisfied.

Sáfár Orsolya Evolutionary algorithms



Decoding

An other approach is modifying the solutions violating the
constrains to feasible solutions with a decoding transformation.

Let us denote the searching space by S , the set of the feasible
solutions by F , where F ⊂ S , and the set of genotypes by G .

A G → F transformation is called decoding if

I For all g ∈ G has a unique image in F

I For all s ∈ F has at least one inverse image in G

Sáfár Orsolya Evolutionary algorithms



Decoding

Sáfár Orsolya Evolutionary algorithms



Example

Let us consider the backpacking problem. Now S is the set of
every possible packing, while F is the set of the packings where the
sum of weights doesn’t surpass the capacity. G is the set of every
0− 1 sequence.

Let us define the decoding the following way: by going from left to
right a 0 means that we don’t pick that item, 1 means that we
pick that item, provided we aren’t over the capacity yet.

This way every 0− 1 sequence has a feasible image. Also every
feasible solution has at least one inverse image, since the decoding
doesn’t change the feasible solutions.

Sáfár Orsolya Evolutionary algorithms



Example continued

In a typical case a solution in F has multiple inverse image, and the
number of inverse images aren’t the same for different solutions.

Example Let us have 8 items, for the first 4 the weights are 10 and
they worth 100, for the second 4 item the weights and the values is
1. Suppose, that the capacity is 12.

Let us denote the following packing by f1: we pick the second, fifth
and sixth items (it’s a feasible solution). Let use denote by f2 the
packing where we’ve chosen the third, fifth and sixth item.

The number of inverse images for f1 is 16, because every solution
fitting the 01##11## maps to it, while the number of inverse
images for f2 8, since they are the packings fitting the 001#11##
scheme.

Sáfár Orsolya Evolutionary algorithms



Example: graph coloring

Let us suppose we have a graph with n vertices. We are looking for
a coloring with 3 colors.

A possible representation for a coloring is a sequence of length n,
which items are 1, 2, 3. The ith element of the sequence is the
color of the ith vertex. This is a CSP, the constrain is that vertices
connected with an edge can’t have the same color.

Sáfár Orsolya Evolutionary algorithms



Graph coloring continued

In order to handle the constrains we will represent the possible
solutions with a permutation instead of a sequence. The
permutation is the order of the vertices. We decode the coloring by
going trough the vertices in the order of the permutation, trying to
color the next vertex 1. If it already has a neighbor colored 1, the
we try coloring it 2. In case it already has a neighbor colored 2, we
try 3. If we also have a 3 colored neighbor we leave that vertex
colorless.

Every feasible solution has at least one permutation coding it: if
we order the vertices according to their color.

The genetic algorithm tries to minimazie the number of colorless
vertices, so we transformed the problem to a COP.

Sáfár Orsolya Evolutionary algorithms



Example: Traveling Salesman

Let us denote the number of cities by n. The representation of the
possible solution are n-long sequences, for which the ith elements
of the sequence is ≤ (n + 1− i). There isn’t any more condition,
the sequences may have a certain number multiple times. In this
case we can use the simple one-point and multi-point crossover
operators.

Decoding Let us fix the order of the cities say A,B,C ,D,E . A
sequence will be transformed to a permutation of the cities the
following way: going from left to right on the list the ith element
means, that we visit the ith city on the list next. After we inserted
the city to our path, we delete the city from the list.

Example: The list {4, 4, 1, 2, 1} codes the order DEACB.

Sáfár Orsolya Evolutionary algorithms



Soft constrains - fitness function

The other possible way of handling the constrains is to transform
them to ’soft constrains’. The solutions which violate the
constrains are punished by modifying their fitness’s (decreasing, if
we maximized in the original problem), and after that we try to
find an optimum for this new fitness function.

In this case the optimization of the algorithm (hopefully) solves the
problem of satisfying the constrains, this is called the indirect
approach.

We can use the following penalties:

I static (constant in each generation)

I dynamic (the values depend on the number of generation)

I adaptive (the values depend on the quality of the solutions)

Sáfár Orsolya Evolutionary algorithms



Statical penalty function

We try to create a function, which is easy to compute. Let us
denote the number of constrains by m. A possible choice is:

P(x) =
m∑
i=1

wi · di (x),

where di (x) is a metric, expressing the distance of the solution
from F . A very simple choice for di , that it’s values are 1 it it’s a
feasible solution, and 0 if it isn’t. The wi are the weights, finding
the optimal ones is often a hard problem.

Sáfár Orsolya Evolutionary algorithms



Dynamical penalty function

If the value penalty changes in each generation, then we have a
dynamical penalty function. Their general form is:

P(x) =
m∑
i=1

wi (t) · di (x).

Since in the beginning we wish to explore the searching space, but
after that we want to concentrate satisfying the constraints, we
have to increase the penalties. A reasonable choice is:
wi (t) = (wi · t)α, where α = 1, or α = 2.

Sáfár Orsolya Evolutionary algorithms



Adaptive penalty function (SAW)

The penalty changes during running, and has the form

P(x) =
m∑
i=1

wi · di (x)

We are going to increase the wi weights. Let us fix a Tp and δw
quantities, which are the parameters of our algorithm.

After Tp fitness evaluation we change the P(x) function. The wi

weight will be increased by δw but only for those constrains, which
are violated by the elite solution (our the current best solution, if
we don’t use elitism).

The reason behind this, is that we want to press our algorithm to
satisfy the hardest constrains (the ones even our best solution
couldn’t satisfy).

Sáfár Orsolya Evolutionary algorithms



n queens problem

We have a n × n chessboard, and we put n queens on it. We wish
to find a layout, where none of the queens hit any other queen.

Figure: A feasible solution for n = 4.

Sáfár Orsolya Evolutionary algorithms



Solving the n queens problem

A first draft of a solution: check every layout. Since a queen hits
her own row and column, it’s enough to check permutation of the
rows, that is n! possible solutions.

For each permutation we have to check
(n

2

)
pairs whether they are

on the same diagonal. That is

n!
n(n − 1)

2
∼
(n
e

)n√
2πn

n(n − 1)

2

For example in the worst case for n = 10 it’s about 1.7 · 108

checks, and for n = 20 it’s 4.6 · 1020.

Sáfár Orsolya Evolutionary algorithms



Solving the n queens (continued)

A better solution based on the following idea. If two queens hit
each other in a partial layout, that none of the layouts are feasible,
which has this part, hence we don’t have to check them.

We build a tree (it’s a graph) from the potential solutions
(permutations). On it’s leaves are the possible solutions (that is
the layouts), on the inner vertices are the common part of the
layouts.

Sáfár Orsolya Evolutionary algorithms



Parts of the tree

Sáfár Orsolya Evolutionary algorithms



Solution (continued)

If to queens hit each other in a partial layout we discard the whole
branch containing it.

Sáfár Orsolya Evolutionary algorithms



Running times

Figure: Running times

Sáfár Orsolya Evolutionary algorithms



Running times

Figure: The rate of increasing

We see that the running time is still worse that an, that is for big
chessboards we have to find a quicker solution. A genetic
algorithm maybe?

Sáfár Orsolya Evolutionary algorithms



Stopping criteria

It’s advised to consider the following conditions as stopping
criterion:

I We stop, if the fitness of the elite solution reaches a threshold
(in this case we also have to have a cap in the number of
generations). This is feasible for CSP problems, where 0
fitness means we satisfied all constrains.

I We stop, if the fitness of the elite solution doesn’t
(significantly) change for several generations. In this case we
don’t waste resource exploring the neighborhood of a
(possibly) local optimum. This is a reasonable stopping
criterion if we don’t know the optimal fitness, that is for FOP
and COP problems.

Sáfár Orsolya Evolutionary algorithms


