
Evolutionary Algorithms

Evolutionary Strategies

Evolutionary Strategies Evolutionary Algorithms



Continuous representations

For some optimization problem the natural selection for
representation are floating point numbers. In this case the
genotype is an (x1, . . . , xk) ∈ Rk vector. For example:

I if the variables have physical meaning (like angle, weight,
length)

I finding global optimum for continuous functions

I finding optimal weights in a neural network

For continuous functions the gradient methods works fine, if the
fitness function is differentiable and convex.

Evolutionary Strategies Evolutionary Algorithms



Simulated Annealing

Let us suppose we have an f : Rn → R function, and we are
looking for a global minimum.

We can use simulated annealing if f is non convex or doesn’t have
a gradient or has plateaus.

We start with one random point, generate several new ones. If
there is a better function value amongst the new points, we select
the one with the best value for the next round, otherwise we select
one randomly according to a distribution, where better points (that
is with lower function values) have better chances to be selected.

Evolutionary Strategies Evolutionary Algorithms



Simulated Annealing

The Simulated Annealing starts with one random point in Rn, and
generates new ones according to a distribution, which gives far
point at the beginning of the iteration with high probability,
although the excepted value of the difference in each coordinate is
0.

During the running of the algorithm we change the parameters, to
lower the expected difference between the old and the new points,
this assures the convergence.

Evolutionary Strategies Evolutionary Algorithms



Generating new points

Let us denote our starting point by x , its coordinates are
x1, x2, . . . , xn. Also, let us denote the new points by u1, u2, . . . um.
We can get the coordinates of the new points by generating two
uniformly distributed random variables on [0, 1], let’s say rand1 and
rand2, and then:

uji = xi + T · (ln(rand1)− ln(rand2)),

where T is a constant.

We can calculate the probability density function of the
distribution of the new coordinates. It tells us that the coordinates
of the new point falls in the (xi − k , xi + k) interval with the
probability 1− exp

(−k
T

)
.

We decrease the value of T in later iterations in order to achieve
convergence (that is, the new points are close to their ’parent’).

Evolutionary Strategies Evolutionary Algorithms



Evolutionary Strategies Evolutionary Algorithms



Selecting the new parent

If there is a new point, where the value of the function is less than
for the parent point, then we choose that point as the new parent
(if there is more than one, we choose the best).

If there is no such point (that is, the value of the function is
greater in every new point than it was in the parent point), then
let us calculate the quantities

g(j) = exp

(
f (x)− f (uj)

T

)
for each uj point. We make a probability distribution from the g(j)
values by scaling, and select the new parent according to this
distribution (like we did with the roulette-wheel method).

Since if g(j) is bigger if the function value is smaller, we give a
higher probability for better looking directions.

Evolutionary Strategies Evolutionary Algorithms



Parameters

It’s recommended to choose T that has the same magnitude as the
distance between the starting point and the optimum (if we have
such information). This T is sometimes called the temperature.

We decrease the temperature in every 10 iterations by multiplying
it with a constant factor (around 0.9 is recommended). If we
decrease it too fast we might end up with an early convergence, if
we decrease too slow we might not converge at all.

It’s not recommended to generate not too many new points, not
only because it takes a lot of computation time, but also increases
the danger of getting stuck in a local optimum.

Evolutionary Strategies Evolutionary Algorithms



Comparison to genetic algorithms

Simulated Annealing has some of the features of the genetic
algorithms: we are getting closer to the optimum by changing the
possible solution (’mutation’). We also create children similar to
their parents, and try to select the fittest.

On the other hand we don’t work on a population, only on one
individual. And the choosing of the right parameters is also a hard
problem, we will see an elegant solution to that when dealing with
the next algorithm.

Evolutionary Strategies Evolutionary Algorithms



Rechenberg’s algorithm

Another option for functions without a smooth gradient is to
design an evolutionary algorithm. Strictly speaking, this algorithm
is not an evolutionary algorithm, but has many similarities to them.
It differs from simulated annealing because

I It generates only one new point by adding to each coordinate
of the parent a normally distributed random number (the
expected value is always 0, the standard deviation is changing)

I If the new point is better, then it discards the old point, if
not, then it discards the new one (elitism)

I The changes in standard deviation (step-size) is adapted to
the function

Evolutionary Strategies Evolutionary Algorithms



Evolutionary Strategies Evolutionary Algorithms



Rechenberg’s 1/5 rule

The bigger the standard deviation (σ), the bigger the expected
step-size of the Rechenberg’s algorithm is.

In the beginning a greater value of σ is recommended in order to
explore the solution space. Later a smaller one is desirable to be
able to have a precise estimate for the optimum.

If there are many successful steps, then we are heading in the right
direction, in this case we should increase the value of σ. This way
we get a quicker convergence.

If in most of the steps we discard the new point, then we are close
to the optimum (since in every direction the function increases), so
we have to decrease σ.

Evolutionary Strategies Evolutionary Algorithms



Rechenberg’s 1/5 rule

Let 0.817 < c < 1 be fixed, and after 20 iterations the ratio of
successful steps is denoted by p. After every 20 iterations, we
change the value of σ:

σ :=



σ
c p > 1

5

σ · c p < 1
5

σ p = 1
5

Evolutionary Strategies Evolutionary Algorithms



Evolutionary strategies

An evolutionary algorithm for a continuous problem has many
similarities with Rechenberg’s algorithm. We use the generation
mechanism of the Rechenberg algorithm as mutation.

The representation of the solution will be an Rn vector (if the
function has n variables) supplemented with a parameter vector
storing the parameters of the algorithm.

From now on an attribute of an individual is not only the function
value itself, but also the expected step size (that is, it tells us
something about the fitness of its offsprings). The algorithm not
only optimizes the function value, but also the step size. In this
way our algorithm is self-adaptive.

Evolutionary Strategies Evolutionary Algorithms



Mutation
In continuous problems, mutation means the changing of every
coordinate at once.

The most commonly used mutation operator is adding a normally
distributed random number to each coordinate, whose expected
value is 0, standard deviation is some σ, which is the parameter
stored in the genotype of the individual. Hence the probability
density distribution is:

p(x) =
1

σ
√

2π
e−

x2

2σ2

With low probability it might give as an offspring that is very far
away from its parent. If we wish to avoid stepping out of a
bounded interval we might use a uniform distribution instead.

If we want to use a distribution which takes big steps with greater
probability then the normal distribution we might consider using
Cauchy-distribution. It’s less concentrated on 0, it doesn’t even
have an expected value.

Evolutionary Strategies Evolutionary Algorithms



Uniform stepsize

If we work with a uniform stepsize, then we have a genotype
(x1, . . . , xn, σ), that has n + 1 coordinates. We generate n random
normally distributed number independently with standard deviation
σ and add these numbers to each coordinates.

Let us denote the random variable with expected value 0, standard
deviation σ by N(0, σ). Then

σ′ = σeτN(0,1), σ′ < ε0 → σ′ = ε0,

and
x ′i = xi + N(0, σ)

We evaluate the quality of the solution two times: first when
selecting parents (that is, how good the actual function value is),
second when creating the offspring (how good offspring it’s able to
generate). Therefore it’s important to change σ first, and generate
the offspring only after that.

Evolutionary Strategies Evolutionary Algorithms



Log-normal distribution

The distribution of eτN(0,1) is called log-normal. We use this
distribution to mutate the standard deviation because:

I mostly small changes are appropriate

I the median is 1, that is, increasing the standard deviance has
the same probability as decreasing

I the mutation has to be neutral in the long term, and the
expected value is 1.

Here the parameter τ is called the learning rate, it’s recommended
to be chosen τ ∼ 1√

n
.

Evolutionary Strategies Evolutionary Algorithms



Uncorrelated normal distribution with the same variance

Evolutionary Strategies Evolutionary Algorithms



2 dimensional problems

This is a function of the type aξ2 + bη2 . It’s known, that every
differentiable function look like this around its local optima,
because the gradient is 0. Here a ∼ b, and a, b > 0.

Evolutionary Strategies Evolutionary Algorithms



2 dimensional problems

Here a >> b > 0, this is called the long valley problem. It causes
difficulties, because taking same sized step in each coordinate is no
longer efficient.

Evolutionary Strategies Evolutionary Algorithms



Uncorrelated mutation

We change the genotype to (x1, x2, . . . , xn, σ1, σ2, . . . , σn). Our
algorithm now learns the appropriate step size (standard deviation)
in each coordinate.
In this case

σ′i = σie
τN(0,1)+τ ′Ni (0,1), σ′ < ε0 → σ′ = ε0,

and
x ′i = xi + Ni (0, σi )

Where the index i means, that we generate the random number
coordinate-wise.

Evolutionary Strategies Evolutionary Algorithms



Mutation of σ

The sum of two independent normally distributed random variables
is also a normally distributed random variable (the new expected
value is the sum of the expected values, the new standard deviation

is
√
σ21 + σ22). It means that the multiplier of the mutation is also

a log-normally distributed random variable with expected value 1.

Instead of a single τ , we have τ and τ ′ parameters now. One that
doesn’t depend on the coordinate τN(0, 1), that controls the
overall convergence rate. The other one, that depends on the
coordinate τ ′Ni (0, 1), that makes us possible to use different step
sizes in each coordinate.

It’s recommended to choose τ ∼ 1√
2n

and τ ′ ∼ 1√
2
√
n

.

Evolutionary Strategies Evolutionary Algorithms



Uncorrelated normal distribution with different variance

Evolutionary Strategies Evolutionary Algorithms



Crossover operators

There are several options for contentious problems:

I discrete crossover, where the allele of the offspring is simply
copied from one of the parents. It is recommended on the
part of the vector where the coordinates are stored in order to
maintain the diversity.

I arithmetic crossover: let 0 < α < 1 one of the offspring is
αx + (1− α)y , the other is (1− α)x + αy . It is recommended
on the part where the parameters are stored.

I Blend: instead of the previous α we choose a random number
on [−.5, 1.5] to avoid early convergence.

Evolutionary Strategies Evolutionary Algorithms



Blend crossover

Let α be 2u − 0.5, where u is uniform random number on [0, 1]. In
this case the offspring is between the parent with probability 1/2
and its distribution is uniform on [1.5xi − yi , 1.5yi − 0.5xi ]. We
maintain the diversity, hence this operator is suitable to be used on
the coordinates part of the genome.

The crossover is global, it is possible to have different parents in
each coordinates.

Evolutionary Strategies Evolutionary Algorithms



Selecting survivors

For continuous problems, we typically generate many more
offspring in one generation (let’s say λ), and then select the best µ
(according to the function value). The selection pressure is the
ratio of µ and λ, it’s usually between 1

7 and 1
4 .

It is recommended to select the new generation’s individuals only
from the offspring (the parents not included), because it reduces
the chance that a single individual dominates the population with a
good function value but an inappropriate step-size.

For this reason the elitism isn’t recommended.

Evolutionary Strategies Evolutionary Algorithms


