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Genetic programming

Genetic programming is a class of evolutionary algorithms where
solutions have a tree graph representation.

The tree structure is a natural representation for arithmetic
expressions, logical expressions or even entire program codes.

Some curve fitting problems and decision trees also have tree
representation for the solutions.
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Prefix form

In the prefix form of an expression, the operator is written first,
followed by the operands between brackets. For example, consider

the expression
i (W)
x+y+1

. The corresponding prefix form is:

sin(/(*(x, y), +(+(x,y),1)))

Prefix form is easy to rewrite in a tree structure. Vertices
correspond to operators, and each vertex has a number of children
equal to the operands of the operator. For non-commutative
operators, the order of the children is relevant.
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Example

sin(/(*(x,y), +(+(x,y),1)))

O ®
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Tree representation

Two types of vertices may be used in a tree:
> operators correspond to inside vertices (vertices with children)

» operands correspond to leaves (vertices without children)

From the tree, the prefix form can be reconstructed with an
exhaustive depth-first search. Starting from the root of the tree,
we go to the leftmost children for as long as possible. After
reaching a leaf, we take a step back, and turn right at the first
possibility. Then repeat. The prefix form is rewritten according to
the order of the vertices of the search.
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Example

Determine the expression represented by the following tree.

QD\%
EFN
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Example
First we run the depth-first search.

Then the prefix form is: /(x(3,tg(6)), —(A(x,5),7)), so:

3-tgb
x> -7
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Logical expressions

Logical expressions can be represented similarly. For example, try
to represent the following expression as a tree:

(x Atrue) = (xVy)V(z < (xAy)))

It can be an issue when the solutions need both logical and
arithmetic expressions. For example,

(N >30)V (D <20 A M > 100)

is a proper expression, but N A 100 is meaningless. To construct
proper trees, we need to make further restrictions.
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Symbolic regression

Example: symbolic regression

A set of functions is given, e.g. basic arithmetic operations, and
sin, cos, exp, abs functions. Our goal is to approximate an unknown
function with a composition of these. The value of the unknown
function is known in some (e.g. 20) points. Then the previous
functions are the operators, and x UR are the operands.

The problem is not defined properly at this point. It is known that
any function known at n points can be approximated by a
polynomial of degree n — 1. So there exists a polynomial of degree
19 that takes exactly the given values at the 20 known points, but
this is not the function we are looking for, because this
interpolation has otherwise poor properties.
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Symbolic regression

Runge's counterexample

Take the function f(x) = ﬁ We watn to appoximate it on
[—4,4]. Take equidistant points for base points (where the value is
known), then calculate the unique interpolating polynomial

(Lagrange polynomial).

Runge ellenpéldaja
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Symbolic regression

Runge's counterexample

The interpolating polynomial of degree 19:

Runge ellenpéldaja 20 osztépontra
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Symbolic regression

Runge's counterexample
The interpolating polynomial of degree 39:

Runge ellenpéldaja 40 osztépontra
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The high degree polynomial approximation oscillates wildly near
the endpoints of the interval, which is not good in general.
Instead, we are looking for a “short” expression. The length of the
expression is controlled during the algorithm to make it short.
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Genetic operators

Construction of the initial population

First we determine a maximal depth of the expression. Then we
use either of the following methods to create the tree:

» Every branch has length equal to the maximal depth. Inner
vertices are uniformly random among operators, and leaves are
uniform among operands

» Starting from the root, every vertex is selected randomly from
the set of operands and operators. If we reach the maximal
depth, we select randomly from operands only.
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Genetic operators

Crossover and mutation

Unlike the majority of genetic algorithms, genetic programming
does not use both operators. It uses only one of them, selected
randomly.

Mutation is the connection of a new random subtree (branch) to a
random vertex. If the vertex is an inner vertex, the original subtree
from that vertex is discarded.

For crossover, we select two vertices randomly at each parent, and
we swap (exchange) the subtrees at those points.
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Genetic operators

Population size

Both maximising fitness and mutation in general causes the trees
to become larger and larger (bloating). To control this, we either
introduce a maximal depth, or apply a penalty function for trees
too big.

Since we typically work with large populations, the selection
pressure is very strong. To still give a reasonable chance of survival
for lower fitness solutions, we apply the 80/20 rule: 80% of parents
are selected from among high fitness solutions, and 20% are
selected from among low fitness solutions. The distinction between
“high” and “low” depends on the population size.
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Genetic operators

Application: optimal compression

A 3-dimensional surface is given as a function over a 2-dimensional
lattice. Our goal is to select some the lattice points and find an
interpolation of the original surface using interpolation over the
selected points.

The ratio of lattice points that can be selected is a priori given
(between 1% and 10%). The question is how to select them.
Design a genetic algorithm for this problem.

One of the main questions is how to measure the fitness of the set
of selected points. We define the fitness function using
angle-optimal triangulations.
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Genetic operators

Optimal triangulation

To approximate the function, we use a function that is linear over
certain domeains, where the domains are triangles in the
triangulation of the lattice points.

There is an exponential number of triangulations, since for any 4
points in a convex position, we can draw the diagonal in 2 ways,

and 5 points in a general position always contain at least 4 points
in a convex position.

We are looking for a triangulation that does not contain very small
angles (which correspond to long triangles). For each triangulation,
we take the list of all the angles in increasing order. From these
lists, we consider the largest in lexicographic ordering to be optimal
(this may not be unique). We need some preparations.
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Genetic operators

Voronoi—cells
For a given finite set of points, the Voronoi-cell belonging to point
P is the set of points which are closer to P than to any other point
in the given set.
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Genetic operators

Delaunay—triangulation

The Delaunay—triangulation is the graph dual of the Voronoi—cells
(we do not prove it).

The dual graph is the following: cells correspond to vertices of the
dual graph, and two vertices are connected if the corresponding
cells are adjacent. This is called the Delaunay—triangulation.
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Genetic operators

Delanuay—triangulation
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Genetic operators

Delanuay—triangulation

If the number of the given points is n and the convex hull contains
k points, then the triangulation consists of 2n — 2 — k triangles.

Proof Every edge belongs to 2 triangles. Inner triangles have 3

edges, and the outside domain has k edges. The triangulation is a

planar graph, so Euler’s formula (n — e + f = 2, where e is the

number of edges and f is the number of domains (faces)) applies:
3(F—1)+ k

U A
n 5 +

from where
2n—3f+3—k+2f=2

and solve for f.
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Genetic operators

Fitness function

The original surface is approximated by triangles in 3 dimensions:
the vertices are determined by the Delanuay—triangulation, with
the third coordinates determined by the value of the function on
the vertices of the triangles.

We calculate the sum of the absolute value of the difference of the
original function and the approximation at the lattice points. The

Delanuay—triangulation ensures that the difference is 0 on vertices
of the triangles.

The sum gives the total error of the approximation. This is the raw
fitness, which we want to minimize.
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Genetic operators

Genetic operators

Initial points

We want to avoid irregular shapes as much as possible, so instead
of a completely random selection of the initial k points, so we take
% on the edge of the lattice, and the rest randomly.

Crossover

We choose an axis randomly, then a constant value on this axis.
We divide both set of points into two parts along this value, then
join the two halves along this value (similar to one-point
crossover). Then we need to correct the number of points by
removing or adding points randomly to get to exactly k points.

Mutation
We replace one point in the set by an adjacent point.
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